首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, a soft lithographic approach has been developed to fabricate free-standing azo polymer microwires with unique photoprocessible characteristics. In the process, an epoxy-based azo polymer (BP-AZ-CA) was used to prepare both the soft lithographic masters and the microwires. The masters were prepared by photofabricating surface relief gratings on BP-AZ-CA thin films. Then the elastomeric stamps were prepared by replica molding of poly(dimethylsiloxane) prepolymer against the masters. With use of the stamps and a solution of BP-AZ-CA as "ink", the microwires were prepared by contact printing and wet etching. The microwires possessed a uniform sub-micrometer-scale transverse dimension and macroscopic longitudinal dimension. Those characteristic sizes depended on the adjustable features of the masters and stamps used in the process. The transverse dimension of the microwires could be altered after exposure to a linearly polarized Ar+ laser single beam with the polarization direction perpendicular to the longitudinal axes of the microwires. Upon irradiation of interfering p-polarized Ar+ laser beams, regular surface relief structures could be inscribed on the microwires along the longitudinal direction, which coincided with both the polarization direction of the laser beams and the grating vector direction of the interference pattern. The microwires with photoprocessible properties are potentially usable as sub-micrometer-scale materials in future miniaturized components and devices. The approach reported in this work can be further extended to the fabrication of nano-/microwires from other polymeric materials.  相似文献   

2.
In this work, azo polymer microspherical cap arrays possessing unique photoprocessible properties have been fabricated through a soft-lithographic contact printing approach. In the process, hexagonal polystyrene (PS) colloidal arrays, obtained by the vertical deposition method, were used as masters. Poly(dimethylsiloxane) (PDMS) stamps with aligned hemisphere air voids on the surfaces were obtained by casting the precursor against the colloidal arrays. By using the stamps and a solution of an epoxy-based azo polymer (BP-AZ-CA) as "ink", the microspherical cap arrays were fabricated by pressing the "inked" surfaces against substrates. Uniform 2D arrays of the submicrometer spherical caps could be obtained on the substrates after peeling off the stamps and drying. The characteristic sizes of the arrays depended on some adjustable features, such as the diameters of PS spheres and concentrations of the "inks" used in the process. After exposure to a linearly polarized Ar+ laser single beam, the spherical caps could be stretched along the polarization direction, and the arrays were consequently transformed into ellipsoidal cap arrays. Upon irradiation of interfering p-polarized Ar+ laser beams, only the spherical caps in the bright fringes were deformed by the light irradiation, which resulted in more complicated surface relief patterns. The observation gives another well-defined example of the photoinduced mass migration in the submicrometer scale. The approach can potentially be applied to fabrication of microlens arrays with different converging rate in two directions.  相似文献   

3.
A moderately hydrophilic, thermoplastic elastomer (poly(ether-ester)) was investigated as a stamp material for microcontact printing of a polar ink: pentaerythritol-tetrakis-(3-mercaptopropionate). Stamps with a relief structure were produced from this polymer by hot embossing, and a comparison was made with conventional poly(dimethylsiloxane) (PDMS) and oxygen-plasma-treated PDMS. It is shown that the hydrophilic stamps can be used for the repetitive printing (without re-inking) of at least 10 consecutive patterns, which preserve their etch resistance, and this in rather sharp contrast to conventional and oxygen plasma-treated PDMS stamps. It is argued that these enhanced printing characteristics of the hydrophilic stamps originate from an improved wetting and solubility of polar inks in the hydrophilic stamp.  相似文献   

4.
A new aggregation‐induced emission (AIE) active polymer (PS‐TPE) with high tetraphenylethene (TPE) loading density was synthesized. The synthesized polymer showed significant AIE properties, good solubility and high thermal stability. Soft‐lithographic contact printing process by using photoinduced surface relief structures on azo polymer film as masters and duplicated PDMS elastomer as stamps was used to fabricate fluorescent PS‐TPE patterns. Various fluorescent structures with high contrast including surface relief gratings, periodically dotted patterns, and quasi‐crystal structures can be easily fabricated through this approach. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1838–1845  相似文献   

5.
The fabrication of patterned microstructures in poly(dimethylsiloxane) (PDMS) is a prerequisite for soft lithography. Herein, curvilinear surface relief microstructures in PDMS are fabricated through a simple three‐stage approach combining microcontact printing (μCP), selective surface wetting/dewetting and replica molding (REM). First, using an original PDMS stamp (first‐generation stamp) with linear relief features, a chemical pattern on gold substrate is generated by μCP using hexadecanethiol (HDT) as an ink. Then, by a dip‐coating process, an ordered polyethylene glycol (PEG) polymer‐dot array forms on the HDT‐patterned gold substrate. Finally, based on a REM process, the PEG‐dot array on gold substrate is used to fabricate a second‐generation PDMS stamp with microcavity array, and the second‐generation PDMS stamp is used to generate third‐generation PDMS stamp with microbump array. These fabricated new‐generation stamps are utilized in μCP and in micromolding in capillaries (MIMIC), allowing the generation of surface micropatterns which cannot be obtained using the original PDMS stamp. The method will be useful in producing new‐generation PDMS stamps, especially for those who want to use soft lithography in their studies but have no access to the microfabrication facilities.  相似文献   

6.
Oxygen plasma-treatment is commonly used to increase the hydrophilicity of poly(dimethylsiloxane) (PDMS) stamps used for microcontact printing (muCP) aqueous-based inks. Review of the literature reveals that a wide range of plasma parameters are currently employed to modify stamp surfaces. However, little is known about the effect of these parameters (e.g., power, chamber pressure, duration) on the undesirable transfer of low-molecular-weight silicon-containing fragments from the stamps that commonly occurs during muCP. To study the effect of oxygen plasma-treatment on Si transfer, unpatterned PDMS stamps were treated with oxygen plasma under various conditions and used to stamp deionized water on plasma-activated poly(methyl methacrylate) (PMMA) substrates. Once stamped, the PMMA substrates were analyzed with X-ray photoelectron spectroscopy (XPS) to quantify and characterize silicon present on the substrate surface. In addition, used PDMS stamps were analyzed with scanning electron microscopy (SEM) to observe topographical changes that occur during oxygen plasma-treatment. XPS results show that all plasma treatments studied significantly reduced the amount of Si transfer from the treated stamps during muCP as compared to untreated PDMS stamps and that the source of transfer is residual PDMS fragments not removed by oxygen plasma. SEM results show that, although the treated stamps undergo a variety of topographical changes, no correlation exists between stamp topography and extent of Si transfer from the stamps.  相似文献   

7.
利用光诱导双折射和偏振红外光谱法研究了偶氮官能化度对环氧树脂类偶氮聚合物BP-AZ-CA的光致取向行为的影响,重点研究了偶氮官能化度对偶氮生色团和聚合物主链的光致取向速度及饱和取向程度的影响规律.结果表明,随着偶氮官能化度的增加,偶氮生色团和聚合物主链的光致取向速度均降低,但二者的饱和取向程度增加.体系中氢键相互作用的增强是导致BP-AZ-CA的光致取向行为随偶氮官能化度增加而变化的原因之一.  相似文献   

8.
In this paper, the mechanism of the recently introduced soft lithographic patterning approach of reactive microcontact printing on thin substrate-supported polystyrene-block-poly(tert-butyl acrylate) (PS690-b-PtBA1210) films using trifluoroacetic acid (TFA)-inked elastomeric poly(dimethylsiloxane) (PDMS) stamps is investigated in detail. In this approach, solventless deprotection reactions are carried out with very high spatial definition using TFA as a volatile reagent that partitions into the PtBA skin layer. On the basis of a systematic investigation of the process, ink loading was identified as a crucial parameter for obtaining faithful pattern transfer. Using optimized conditions, submicrometer-sized patterns were successfully fabricated. In combination with subsequent wet chemical covalent coupling of various (bio)molecules, reactive microCP is established as an approach to afford positive, as well as negative, images of the features of the stamps used. In addition, the size of the patterned areas was manipulated by exploiting the controlled spreading of the ink; thus, stamps with identical features yield patterns with different sizes, yet identical periodicity, as shown for bovine serum albumin (BSA)-poly(ethylene glycol) patterns. The reactive microCP methodology affords new pathways for submicrometer-scale patterning of bioreactive surfaces.  相似文献   

9.
Elastomeric replicas of surface relief structures were prepared by molding poly(dimethylsiloxane) (PDMS) precursors against photo-inscribed surface-relief-gratings on azo polymer films. The PI solutions were micro-contact printed with the elastomeric PDMS replica on quartz slides. Good surface-relief-grating structures were formed on the quartz slides. The quartz slides covered with surface-relief-grating polymide (PI) films were then assembled into liquid crystal (LC) cells. The transmittance passing through the cell between crossed polarizers changed periodically with a regular 90° separation of the rotational angle. The pretilt angle of the cell was found to be 2.8°. Results showed that the PI films with surface-relief-grating structures by this micro-contact printing process have good liquid crystal alignment ability. This preparation method of alignment layers can be considered a potentially useful technique in the LC display (LCD) industry in the future. Translated from Acta Polymerica Sinica, 2006, (7): 908–911 [译自: 高分子学报]  相似文献   

10.
High-density Pd line arrays with 55 nm line-width were obtained using nanocontact-printed dendrimer monolayers. Elastomeric PDMS stamps for nanocontact printing were replicated from silicon master molds which were fabricated by UV nanoimprinting in combination with reactive ion etching. The fabrication method effectively controlled the aspect ratios of high-density lines for resolving the problems encountered in both replicating silicon masters to PDMS stamps and printing with the replicated PDMS stamps. Using the PDMS nanostamp with an optimized aspect ratio, a self-assembled monolayer of dendrimer was patterned on a Pd film via nanocontact printing, which was facilitated by the strong interaction between Pd and amine groups of the dendrimer. The patterned self-assembled monolayer was used as an etch-resist mask against the wet etchant of Pd, leaving behind a high-density Pd line array over large areas. The resulting functional Pd nanopattern is of practical significance in microelectronics and bio- or gas-sensing devices.  相似文献   

11.
Summary: A soft‐lithographic imprinting approach to fabricate super‐hydrophobic surfaces has been developed in this work. In this process, fresh lotus leaves were used as masters and PDMS stamps were prepared by replica molding against the lotus‐leaf surfaces. By using the stamps and an epoxy‐based azo polymer solution as “ink”, the mimicked lotus‐leaf surfaces made of the polymer were fabricated by pressing the featured faces of the stamps against “inked” substrates and drying under a proper condition after peeling off the stamps. The lotus‐leaf‐like surfaces show super‐hydrophobic characteristics with the water contact angle higher than 150° and contact angle hysteresis less than 3°.

SEM images of lotus‐leaf‐like papillary structures on the imprinted surface.  相似文献   


12.
Poly(dimethylsiloxane) (PDMS) stamps are widely used in soft lithographic methods. They are powerful tools for obtaining structures of soft material in the micrometer to nanometer range by printing techniques. In this contribution, a new application of h-PDMS stamps for nanobead deposition is introduced. Magnetite-polysaccharide particles of an average diameter of 150 nm are used. They can be biologically functionalized by attaching various molecular groups. Deposition of these particles on a carrier substrate results in well-reproducible structures. This is achieved by means of PDMS stamps with different patterns using a microfluidic approach on one hand and a printing approach on the other hand. Furthermore, magnetic substrates with particular domain structures have been used. The beads can then be arranged in rather complicated but well-defined geometrical structures along the domain walls. The magnetic interaction considerably increases the adhesion of the beads to the carrier substrate. All involved materials are biocompatible. Thus the setup can be used in cell culture experiments in order to investigate influences of different particle-bound proteins and particle patterns on cell growth and vitality.  相似文献   

13.
以偶氮聚合物光致表面起伏光栅为模板,制备聚二甲基硅氧烷(PDMS)弹性印章,再以可溶性聚酰亚胺(PI)为“墨水”,在石英玻璃上压印出具有规则起伏结构的PI薄膜.由此制备的PI薄膜显示出很好的使液晶分子定向排列的效果.此方法成本低、效率高,是一种实用的液晶定向层薄膜制备方法.  相似文献   

14.
Different methods to create chemically patterned, flat PDMS stamps with two different chemical functionalities were compared. The best method for making such stamps, functionalized with 1H,1H,2H,2H-perfluorodecyltrichlorosilane (PFDTS) and 3-(aminopropyl)triethoxysilane (APTS), appeared to be full functionalization of a freshly oxidized flat PDMS stamp with either adsorbate, followed by renewed oxidation through a mask and attachment of the other adsorbate. These stamps were used to transfer polar inks (a thioether-functionalized dendrimer and a fluorescent dye) by microcontact printing. The PFDTS monolayer was used as a barrier against ink transfer, while the APTS SAM areas functioned as an ink reservoir for polar inks. The printing results confirmed the excellent transfer of hydrophilic inks with these stamps to gold and glass substrates, even from aqueous solutions. Attachment of a fluorescent dye on the amino-functionalized regions shows the possibility of the further modification of the chemically patterned stamps for tailoring of the stamps' properties.  相似文献   

15.
通过重氮偶合反应制备了含氨基取代基的假芪型偶氮小分子,并将其再配制成重氮盐,在极性溶剂中与含苯胺残基的环氧前体聚合物进行重氮偶合反应,制备了3种含双偶氮生色团的环氧树脂基聚合物BP-2A-35-CN、BP-2A-35-NT和BP-2A-35-2NT.利用仪器分析手段对其结构和热性能进行了表征;采用干涉激光辐照的方法,研究了不同取代基团对聚合物的光致表面起伏光栅形成过程的影响.研究结果表明,在相同光照条件下,BP-2A-35-CN和BP-2A-35-NT膜表面可形成正弦波形起伏光栅,但BP-2A-35-2NT膜表面无法形成明显的起伏结构.  相似文献   

16.
利用重氮偶合反应和后重氮偶合反应制备了主链和端基含有不同假芪型偶氮苯生色团的超支化偶氮聚合物.利用氢核磁共振、紫外光谱、红外光谱等分析手段确定了合成聚合物的结构、玻璃化转变温度和光谱特性等.研究了聚合物光致二向色性的性能,此聚合物的取向有序度为0.063.用两束相干的P偏振Ar+激光对聚合物膜进行光加工,得到形状规则的正弦波形表面起伏光栅,末端偶氮苯基团的引入极大地增加了超支化偶氮聚合物的光响应速度.  相似文献   

17.
This paper describes the use of micropatterned agarose stamps prepared by molding against PDMS masters to print patterns of bacteria on agar plates. Topographically patterned agarose stamps were inked with suspensions of bacteria; these stamps generated patterns of bacteria with features as small as 200 microm over areas as large as 50 cm2. Stamps with many small features (>200 microm) were used to study patterns of bacteria growing on media containing gradients of small molecules; stamps with larger features (>750 microm) were used to print different strains of bacteria simultaneously. The stamp transfers only a small percentage of cells that are on its surface to the agar at a time; it is thus possible to replica-pattern hundreds of times with a single inking. The use of soft stamps provides other useful functions. Stamps are easily customized to provide a range of patterns. When culture media is included in the agarose stamp, cells divide and thrive on the surface. The resulting "living stamp" regenerates its "ink" and can be used to pattern surfaces repetitively for a month. This method is rapid, reproducible, convenient, and can be used to control the pattern, spacing, and orientation between colonies of different bacteria.  相似文献   

18.
This work describes a simple technique for direct patterning of single-walled carbon nanotube (SWNT)/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) composite electrodes in a large area on a substrate based on the solution transfer process by microcontact printing using poly(dimethylsiloxane) (PDMS) stamps. Various shapes of SWNT/PEDOT-PSS composite patterns, such as line, circle, and square, can be easily fabricated with high pattern fidelity and structural integrity. The single parallel line pattern device exhibits high electrical conductivity (0.75 × 10(5) S/m) and electronic stability because of alignment of nanotubes and big-size SWNT bundles (~5 nm). The electromechanical study reveals that the composite patterns show ~1% resistance change along SWNT alignment direction and ~5% resistance change along vertical alignment direction after 200 bend cycles. Our approach provides a facile, low-cost method to pattern transparent conductive SWNT/polymer composite electrodes and demonstrates a novel platform for future integration of conducting SWNT/polymer composite patterns for optoelectronic applications.  相似文献   

19.
It is well-established that, during microcontact printing (muCP) using poly(dimethylsiloxane) (PDMS)-based stamps, some unexpected siloxane fragments can be transferred from the stamp to the surface of the sample. This so-called contamination effect coexists with the delivery of the molecules constituting the ink and by this way influences the printing process. The real impact of this contamination for the muCP technique is still partially unknown. In this work, we investigate the kinetics of this contamination process through the surface characterization of both the sample and the stamp after imprinting. The way both the curing conditions of the PDMS material and the contact time influence the degree of contamination of the surface is investigated on silicon and glass substrates. We propose a cleaning process of the stamp during several hours which eliminates any trace of contamination during printing. We show that hydrophobicity recovery of PDMS surfaces after hydrophilic treatment using oxygen plasma is considerably slowed down when the PDMS material is cleaned using our procedure. Finally, by comparing cleaned and uncleaned PDMS stamps, we show the influence of contamination on the quality of muCP using fluorescent DNA molecules as an ink. Surprisingly, we observe that the amount of DNA molecules transferred during muCP is higher for the uncleaned stamp, highlighting the positive impact of the presence of low molecular weight siloxane fragments on the muCP process. This result is attributed to the better adsorption of oligonucleotides on the stamp surface in presence of these contaminating molecules.  相似文献   

20.
Microcontact printing is a heavily used surface modification method in materials and life science applications. This concept article focuses on the development of versatile stamps for microcontact printing that can be used to bind and release inks through molecular recognition or through an ink reservoir, the latter being used for the transfer of heavy inks, such as biomolecules and particles. Conceptually, such stamp properties can be introduced at the stamp surface or by changing the bulk stamp material; both lines of research will be reviewed here. Examples include supramolecular stamps with affinity properties, polymer‐layer‐grafted PDMS stamps, and porous multilayer‐grafted PDMS stamps for the first case, and hydrogel stamps and porous stamps made by phase‐separation micromolding for the second. Potential directions for future advancement of this field are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号