首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
以聚苯氧基磷酸联苯二酚酯(PBPP)与聚磷酸铵(APP)组成复合阻燃剂,对环氧树脂(EP)进行阻燃改性.通过氧指数(LOI)、垂直燃烧(UL-94)、热失重(TGA)、锥形量热(CONE)和扫描电镜(SEM)等方法研究改性环氧树脂的阻燃性能和阻燃机理.结果表明,PBPP/APP体系对EP具有较好的阻燃性能,阻燃剂添加量为10%时能使环氧树脂的氧指数提高到29.6%,垂直燃烧等级达到UL94 V-0级,残炭量大大增加;平均热释放速率下降45.7%,热释放速率峰值下降51.0%,有效燃烧热平均值下降21.1%;TGA、CONE、SEM等综合分析显示了PBPP/APP改性后的环氧树脂比纯环氧树脂具有更高的热稳定性,燃烧后能够形成连续、致密、封闭、坚硬的焦化炭层,在聚合物表面产生有效覆盖、隔绝了氧气,改善了环氧树脂的燃烧性能.  相似文献   

2.
将Bi2O3、Sb2O3、SnO2添加到聚磷酸铵(APP)和双季戊四醇(DPER)膨胀型阻燃聚丙烯(PP)体系中,采用氧指数(OI)、热分析(TGA)、热红联用(TG-FTIR)和扫描电镜(SEM),考察它们对膨胀阻燃体系的催化协效作用,探讨其作用机理.结果表明,3种金属氧化物在适量的添加下都可以提高体系的氧指数.TG结果表明,Bi2O3的加入可以提高膨胀炭层在高温时的热稳定性,增加高温时残余物的量;TG-FTIR结果显示添加Bi2O3后,膨胀阻燃剂在热分解过程中,气体的释放过程发生了改变.膨胀炭层的SEM图表明,Bi2O3可以改善膨胀炭层的形貌,提高炭层的隔热隔质性能.0.1 wt%的Bi2O3和1 wt%的纳米黏土复配用于膨胀阻燃体系中,可以在阻燃剂添加20份下,样品氧指数达到28.3;在阻燃剂添加25时,样品(3.2 mm)通过UL-94 V-0级.0.1 wt%的Bi2O3和1 wt%纳黏粘土的添加,还可以提高体系的力学性能.  相似文献   

3.
通过极限氧指数(LOI)和垂直燃烧(UL-94),对比分析了十二烷基硫酸钠改性双羟基氧化物(SDS-LDH)和十六烷基三甲基溴化铵改性蒙脱土(CTAB-MMT)协同聚磷酸铵(APP)对聚(丙烯酸丁酯-醋酸乙烯酯)(P(BA-VAc))胶膜阻燃效果的异同.当APP添加量为14.5 wt%,层状无机粒子引入量为0.5 wt%时,P(BA-VAc)/APP/SDS-LDH和P(BA-VAc)/APP/CTAB-MMT的最佳LOI值分别为30.5和30.1.通过热分析法(TGA)探讨了阻燃型复合材料的热降解行为.700℃时,P(BA-VAc)/14.5%APP/0.5%SDS-LDH比P(BA-VAc)/14.5%APP/0.5%CTAB-MMT的残留量高2.7%.采用扫描电镜(SEM)观察复合材料LOI测试后炭层微观形貌.与P(BA-VAc)/15%APP复合材料相比,P(BA-VAc)/14.5%APP/0.5%SDS-LDH和P(BA-VAc)/14.5%APP/0.5%CTAB-MMT燃烧后炭层的外表面更加致密,并且连续性更好.通过傅里叶变化红外(FTIR)和X-射线光电子能谱(XPS)对阻燃材料500℃热氧化炭层进行了分析.SDS-LDH和CTAB-MMT均可促进更多酯化反应和脱水反应发生;相比而言,SDS-LDH具有较好的催化协同成炭效果.  相似文献   

4.
采用有机蒙脱土(OMMT)和碳酸镍(NC)为阻燃协效剂,与膨胀型阻燃剂(IFR)三元体系协同阻燃线性低密度聚乙烯(LLDPE).采用热重分析(TGA)、氧指数(LOI)测试、UL-94燃烧测试和锥形量热测试(CONE)研究了LLDPE阻燃体系的热稳定性和燃烧性能;采用红外光谱分析(FT-IR)、数码相机和扫描电子显微镜(SEM)对燃烧残余物的结构和形貌进行了分析.结果表明:固定mnLLDPE/mIFR=7/3,当moMMT/m(LLDPE+IFR)=0.04时,阻燃体系的LOI为31.5%,通过UL-94 V-0级测试,LLDPE-IFR-OMMT的残炭率为15.09%,最大热释放速率(PHRR)相比于纯LLDPE降低了50%;向LLDPE-IFR-OMMT体系中添加NC,少量的NC就能显著增加体系的阻燃性能,当mNC/m(LLDPE+IFR)=0.02时,阻燃体系的LOI为32.7%,LLDPE-IFR-OMMT-NC的残炭率达到19.04%,PHRR相比于纯LLDPE降低了57%.OMMT和NC的加入能催化LLDPE-IFR成炭,形成致密的炭层,增加炭层的强度,从而提高复合材料的阻燃性能.  相似文献   

5.
王成乐  丁鹏  李娟 《高分子学报》2016,(11):1594-1598
将具有封闭空心结构的酚醛微球(HPMs)引入到聚丙烯/膨胀阻燃剂(PP/IFR)体系,燃烧时一方面依托PP/IFR形成膨胀多孔炭,另一方面通过HPMs形成空心炭微球,嵌入到前面多孔炭的骨架中,形成具有多层次孔的炭结构,从而调控膨胀炭层,进而调节材料的阻燃性能.通过极限氧指数(LOI)、垂直燃烧(UL-94)等研究了材料的阻燃性能;通过热失重分析(TGA)测试其热稳定性;采用红外热成像仪监测燃烧过程材料的表面温度,用扫描电镜(SEM)观察IFR、HPMs在基体中的分散行为及炭层结构.结果表明,少量HPMs在聚合物中分散得比较均匀.HPMs调控了膨胀炭层,使PP/IFR形成了表层炭致密,内层具有多层次孔的炭结构.这种优质的炭结构可以使样品表面温度迅速降低,从而有效提高PP/IFR体系的阻燃效率,使得PP在添加18 wt%IFR和1 wt%HPMs就可以通过UL-94 V0级别.  相似文献   

6.
高密度聚乙烯/蒙脱土纳米复合材料膨胀阻燃体系的性能   总被引:1,自引:0,他引:1  
使用以乙烯/醋酸乙烯共聚物(EVA)为相容剂的高密度聚乙烯/蒙脱土(HDPE/OMT)纳米复合材料作为基体,制备了含不同成炭剂的聚磷酸铵(APP)膨胀阻燃体系,对其阻燃性能进行了比较和研究,并分析了蒙脱土与膨胀阻燃剂协效作用的机理。热重分析(TGA)、垂直燃烧(UL-94)、极限氧指数(LOI)、锥形量热计结果表明:APP/季戊四醇(PER)体系熔融过程较短可形成蒙脱土增强炭层;PER/PA/OMT体系中较高的有机物含量有利于蒙脱土迁移和堆积。  相似文献   

7.
本文以二氯化磷酸对甲基苯酯和10-(2,5-二羟基苯基)-10-氢-9-氧杂-10-磷杂菲-10-氧化物(ODOPB)为原料,合成了一种新型聚磷酸酯阻燃剂聚磷酸-2-10-氢-9-氧杂-10-磷杂菲-10-氧化物基对苯二酚对甲苯酯(POTP),并采用傅里叶变换红外光谱(FTIR)和核磁共振(~(31)P-NMR,~1H-NMR和~(13)C-NMR)对其结构进行表征.将POTP与蒙脱土(MMT)及聚磷酸铵(APP)组成复合阻燃剂对环氧树脂(EP)进行阻燃改性,通过垂直燃烧(UL-94)、氧指数(LOI)、热失重(TGA)、锥形量热(CONE)和扫描电镜(SEM)等方法研究其对EP的热性能和阻燃性能的影响.结果表明,当阻燃剂添加量为7%时, EP复合材料UL-94测试等级可达V-0级;当添加阻燃剂为9%时,其LOI值可达到27.6%,最大热释放速率(Pk-HRR)下降了50.1%,热释放总量(THR)下降了27.4%,其残炭量高达29%. CONE测试后的残炭形貌研究显示阻燃EP在高温下形成较稳定的致密膨胀炭层,能有效抑制烟毒性气体释放,隔绝可燃气体与空气的交换,从而提高阻燃EP在高温下的热稳定性和阻燃性能.  相似文献   

8.
以9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)、五硫化二磷(P2S5)为原料合成9,10-二氢-9-氧杂-10-磷杂菲-10-硫化物(DOPS),并将DOPS与聚磷酸铵(APP)组成复合阻燃剂,用于环氧树脂(EP)的阻燃改性.通过氧指数(LOI)、垂直燃烧(UL-94)、热失重(TGA)、锥形量热(CONE)和扫描电镜(SEM)等方法对改性后的环氧树脂的阻燃性能和阻燃机理进行了测试和分析.实验结果表明,DOPS/APP阻燃体系对EP具有很好的阻燃性能,且复配阻燃剂的阻燃效果比单一的阻燃剂阻燃效果好;其中,当阻燃剂的总添加量达到30%时即W_(DOPS)=10%、W_(APP)=20%时,阻燃EP复合材料的LOI值可达到29.2%,垂直燃烧等级达到UL-94 V-0级,残炭量可达49.3%.  相似文献   

9.
聚磷酸铵的疏水改性及聚丙烯阻燃性能   总被引:2,自引:0,他引:2  
首先以γ-氨丙基三乙氧基硅烷(KH550)对聚磷酸铵(APP)进行表面化学修饰,然后用水解后的正硅酸四乙酯在其表面引发原位聚合,最后用十七氟癸基三乙氧基硅烷(氟硅烷)进行外表面修饰,制备了疏水聚磷酸铵(M-APP).M-APP的静态接触角为134°,表明M-APP具有很好的疏水性.通过傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)对M-APP的结构及表面元素进行分析,结果表明,M-APP即为目标产物.将M-APP与三嗪成炭发泡剂(CFA)以质量比4∶1复配制备改性膨胀型阻燃剂(M-APP/CFA),并添加到聚丙烯(PP)中,制备阻燃PP(PP/M-APP/CFA).通过极限氧指数(LOI)和垂直燃烧(UL-94)研究了其阻燃性能,用热重分析(TGA)研究了材料的热降解行为,通过耐水测试研究了耐水性能,通过拉伸、弯曲和冲击强度研究了材料的力学性能,通过扫描电子显微镜(SEM)研究了改性膨胀型阻燃剂与聚合物的相容性.结果表明,当m IFR的添加量为23%时,PP/M-APP/CFA通过UL-94 V-0级,LOI值达到30.8%,且经过耐水测试后,依然能通过UL-94 V-0级,PP/M-APP/CFA的失重率仅为0.92%.在相同实验条件下,由APP制备的PP/M-APP/CFA材料在耐水测试后UL-94测试无级别,失重率达2.45%,表明APP的表面疏水改性大大提高了PP/M-APP/CFA材料的耐水性能.M-APP/CFA的加入提高了材料的热稳定性及成炭性能,燃烧时形成的膨胀炭层能很好地保护内部材料的降解和燃烧,从而提高了材料的阻燃性能.APP的改性提高了M-APP/CFA与PP的相容性,从而提高了材料的力学性能.  相似文献   

10.
利用锥形量热仪(CONE)和热重分析(TGA),并结合极限氧指数(LOI)和UL-94垂直燃烧测试方法对核(PSt/OMMT)-壳(PBA)结构纳米复合粒子(CSN)填充聚丙烯(PP)-乙烯-醋酸乙烯酯共聚物(EVA)复合材料及加入无卤复配阻燃剂制备的PP-EVA/CSN/聚磷酸铵(APP)/层状氢氧化镁铝(LDH)复合阻燃材料的阻燃性能及热降解行为进行了研究。结果表明,添加10%(wt)CSN可以提高PP-EVA复合材料的阻燃性能,且PP-EVA复合体系燃烧时的热释放速率、有效燃烧热减少,热稳定性增强。CSN与APP/LDH产生阻燃协同作用,使复合阻燃材料的阻燃性能、热稳定性能进一步提高。  相似文献   

11.
李斌 《高分子科学》2015,33(2):318-328
The effects of aluminum hypophosphite(AHP) as a synergistic agent on the flame retardancy and thermal degradation behavior of intumescent flame retardant polypropylene composites(PP/IFR) containing ammonium polyphosphate(APP) and triazine charring-foaming agent(CFA) were investigated by limiting oxygen index(LOI), UL-94 measurement, thermogravimetric analysis(TGA), cone calorimeter test(CONE), scanning electron microscopy(SEM) and X-ray photoelectron spectroscopy(XPS). It was found that the combination of IFR with AHP exhibited an evident synergistic effect and enhanced the flame retardant efficiency for PP matrix. The specimens with the thickness of 0.8 mm can pass UL-94 V-0 rating and the LOI value reaches 33.5% based on the total loading of flame retardant of 24 wt%, and the optimum mass fraction of AHP/IFR is 1:6. The TGA data revealed that AHP could change the degradation behavior of IFR and PP/IFR system, enhance the thermal stability of the IFR and PP/IFR systems at high temperatures and promote the char residue formation. The CONE results revealed that IFR/AHP blends can efficiently reduce the combustion parameters of PP, such as heat release rate(HRR), total heat release(THR), smoke production rate(SPR) and so on. The morphological structures of char residue demonstrated that AHP is of benefit to the formation of a more compact and homogeneous char layer on the materials surface during burning. The analysis of XPS indicates that AHP may promote the formation of sufficient char on the materials surface and improve the flame retardant properties.  相似文献   

12.
Microencapsulated ammonium polyphosphate with polyurethane resin (PUMAPP) was prepared by in situ polymerization and characterized by X-ray photoelectron spectroscopy (XPS). The flame retardation of PUMAPP/dipentaerythritol(DPER) and ammonium polyphosphate (APP)/DPER flame retarded polypropylene (PP)/ethylene propylene diene rubber (EPDM) composites were studied using limiting oxygen index (LOI), UL-94 test and cone calorimeter. Results demonstrated that the flame retardancy of the PP/EPDM/PUMAPP/DPER composites was better than that of the PP/EPDM/APP/DPER composites at the same additive loading. Real time Fourier transform infrared (FTIR) and thermogravimetric analysis (TG) were used to study the thermal degradation and stability of the PP/EPDM/PUMAPP/DPER composite. The hydrolytic stability of the flame retarded PP/EPDM composites was studied. It was found that the microencapsulation of APP with the PU resin leaded to a decrease in the particle's water solubility. Moreover, the synergistic effect of vinyltrimethoxysilane (VTMS) on the PP/EPDM/PUMAPP/DPER composite was also investigated.  相似文献   

13.
The ferrocene‐based polymer (PDPFDE) accompanied with traditional intumescent flame retardant (IFR) system (ammonium polyphosphate (APP)/pentaerythritol (PER) = 3/1, mass ratio) has been used as additive flame retardant in polypropylene (PP), aiming to lower the total loading amount. The thermal stability and fire retardant properties were investigated by thermogravimetric analysis (TGA), limiting oxygen index (LOI), vertical combustion (UL‐94), and cone calorimetry (CONE). The fire retardant mechanism was studied by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy. The results showed that the PP1 with 25 wt% IFR only passed the UL‐94 V‐1 rating, but the PP6 loaded by 0.5 wt% PDPFDE and 22.5 wt% IFR possessed an LOI value of 28.5% and passed the UL‐94 V‐0 rating; the peak heat release rate (pHRR) and total heat release (THR) are decreased by 63% and 43%, respectively, compared with pure PP. In addition, the char residue of PP6 manifested a very compact and smooth surface, indicating a more effective barrier layer. Meanwhile, it was interesting that the addition of PDPFDE evidently improved the impact strength and elongation at break of PP/IFR composites.  相似文献   

14.
Variable amounts of zinc and nickel salts, such as ZnSO4·7H2O and NiSO4·6H2O, have been incorporated into blends of polypropylene (PP)/ammonium polyphosphate (APP)/dipentaerythritol (DPER) with the aim of studying their effect on intumescent flame retardance (IFR). The PP/IFR/salt composites have been prepared using a twin-screw extruder, and their IFR behaviours have been evaluated through limiting oxygen index (LOI), vertical burning tests (UL-94), and cone calorimeter tests (CONE). The results show that, at an appropriate level, zinc and nickel salts can increase the LOI and decrease the heat release rate (HRR). The composites have been studied with the aid of thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The flame-retardant mechanism of the PP/IFR/salts system is also discussed in terms of catalytic charring. ZnSO4·7H2O has been shown to be the most effective among the aforementioned metal salts, which has proved to be strongly associated with its low melting point and the interaction between DPER and SO42−.  相似文献   

15.
An intumescent flame retardant system composed of ammonium polyphosphate (APP) and pentaerythritol (PER) was used for flame retarding ethylene–propylene–diene‐modified elastomer (EPDM)/polypropylene (PP) blends. Cerium phosphate (CeP) was synthesized and the effect on flame retardancy and thermal stability of EPDM/PP composites based on intumescent flame retardant (IFR) were studied by limiting oxygen index (LOI), UL‐94, and thermogravimetic analysis (TGA), respectively. Scanning electron microscopy (SEM) and Fourier transform infrared spectrometry (FTIR) were used to analyze the morphological structure and the component of the residue chars formed from the EPDM/PP composites, and the mechanical properties of the materials were also studied. The addition of CeP to the EPDM/PP/APP/PER composites gives better flame retardancy than that of EPDM/PP/APP/PER composites. TGA and RT‐FTIR studies indicated that an interaction occurs among APP, PER, and EPDM/PP. The incorporation of CeP improved the mechanical properties of the materials. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
The flammability of polypropylene (PP) composites containing intumescent flame retardant additives, i.e. melamine phosphate (MP) and pentaerythritol (PER), dipentaerythritol (DPER) or tripentaerythritol (TPER) was characterized by limiting oxygen index (LOI), UL 94 and the cone calorimeter, and the thermal degradation of the composites was studied using thermogravimetric analysis (TG) and real time Fourier transform infrared (RTFTIR). It has been found that the PP composite containing only MP does not show good flame retardancy even at 40% additive level. Compared with the PP/MP binary composite, the LOI values of the PP/MP/PER (PP/MP/DPER or PP/MP/TPER) ternary composites at the same additive loading are all increased, and UL 94 ratings of most ternary composites studied are raised to V-0 from no rating (PP/MP). The cone calorimeter results show that the heat release rate and smoke emission of some ternary composites decrease in comparison with the binary composite. It is noted from the TG data that initial decomposition temperatures of ternary composites are lower than that of the binary composite. The RTFTIR study indicates that the PP/IFR composites have higher thermal oxidative stability than the pure PP.  相似文献   

17.
邓聪  王玉忠 《高分子科学》2015,33(2):203-214
To improve the flame-retardant efficiency and water resistance of ammonium polyphosphate(APP), the UV-curable pentaerythritol triacrylate(PETA) was used to microencapsulate APP via the UV curing polymerization method. The prepared PETA-microencapsulated APP(PETA-APP) was characterized by Fourier transform infrared spectroscopy(FTIR), scanning electron microscopy(SEM), and thermogravimetric(TG) analysis. PETA-APP was used as intumescent flame retardant(IFR) alone to flame retard polypropylene(PP). The water resistance of PP/PETA-APP composites was investigated, and the effect of PETA on the combustion behaviors of PP/APP composites was studied through limiting oxygen index(LOI), vertical burning test(UL-94) and cone calorimeter(CC) test, respectively. With 40 wt% of PETA-APP, the PP/PETA-APP system could achieve a LOI value of 30.0% and UL-94 V-0 rating after treatment in hot water for 168 h, while the LOI value of the system containing 40 wt% uncoated APP was only 19.2%, and it failed to pass the UL-94 rating. CC test results showed that the heat release rate(HRR), mass loss rate(MLR) and smoke production rate(SPR) of PP/PETAAPP system decreased significantly compared with PP/APP system, especially the peak of HRR was decreased by 51.4%. The mechanism for the improvement of flame reatardancy for PP/PETA-APP composites was discussed based on FTIR and X-ray photoelectron spectroscopy(XPS) tests. All these results illustrated that simultaneous improvement of flame retardancy and water resistance for PP/APP was achieved through coating UV-curable PETA onto APP.  相似文献   

18.
The charring agent (CNCA‐DA) containing triazine and benzene rings was combined with ammonium polyphosphate (APP) to form intumescent flame retardant (IFR), and it was occupied to modify polylactide (PLA). The flame retardant properties and mechanism of flame retardant PLA composites were investigated by the limited oxygen index (LOI), vertical burning test (UL‐94), thermogravimetric analysis, microscale combustion calorimetry, scanning electron microscopy, laser Raman spectroscopy analysis and X‐ray photoelectron spectroscopy. The analysis from LOI and UL‐94 presented that the IFR was very effective in flame retardancy of PLA. When the weight ratio of APP to CNCA‐DA was 3:1, and the IFR loading was 30%, the IFR showed the best effect, and the LOI value reached 45.6%. It was found that when 20 wt% IFR was loaded, the flame retardancy of PLA/IFR still passed UL‐94 V‐0 rating, and its LOI value reached 32.8%. The microscale combustion calorimetry results showed that PLA/IFR had lower heat release rate, total heat release, and heat release capacity than other composites, and there was an obvious synergistic effect between APP and CNCA‐DA for PLA. IFR containing APP/CNCA‐DA had good thermal stability and char‐forming ability with the char residue 29.3% at 800°C under N2 atmosphere. Scanning electron microscopy observation further indicated that IFR could promote forming continuous and compact intumescent char layer. The laser Raman spectroscopy analysis and X‐ray photoelectron spectroscopy analysis results indicated that an appropriate graphitization degree of the residue char was formed, and more O and N were remained to form more cross‐linking structure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
A novel ionic liquid containing phosphorus ([PCMIM]Cl) was synthesized and characterized by FTIR, 1H NMR, 13C NMR and 31P NMR. Moreover, a new intumescent flame retardant (IFR) system, which was composed of [PCMIM]Cl and ammonium polyphosphate (APP), was used to impart flame retardancy and dripping resistance to polypropylene (PP). The flammability and thermal behaviors of intumescent flame‐retarded PP (PP/IFR) composites were evaluated by limiting oxygen index (LOI), UL‐94 test, thermogravimetric analysis (TGA) and cone calorimeter test. It was found that there was an obvious synergistic effect between [PCMIM]Cl and APP. When the weight ratio of [PCMIM]Cl and APP was 1:5 and the total amount of IFR was kept at 30 wt%, LOI value of PP/IFR composite reached 31.8, and V‐0 rating was obtained. Moreover, both the peak heat release rate and the peak mass loss rate of PP/IFR composites decreased significantly relative to PP and PP/APP composite from cone calorimeter analysis. The TGA curves suggested that [PCMIM]Cl had good ability of char formation, and when combined with APP, it could greatly promote the char formation of PP/IFR composites, hence improved the flame retardancy. Additionally, the rheological behaviors and mechanical properties of PP/IFR composites were also investigated, and it was found that [PCMIM]Cl could also serve as an efficient lubricant and compatibilizer between APP and PP, endowing the materials with satisfying processability and mechanical properties. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A hyperbranched polyamine was prepared using an A2 + B3 approach. It acted as a hyperbranched charring and foaming agent (HCFA) in combination with ammonium polyphosphate (APP) to form a new intumescent flame retardant (IFR) system for polyamide 6 (PA6). Effect of HCFA on flame retardant and thermal degradation properties of IFR‐PA6 was investigated by limiting oxygen index (LOI), UL‐94 vertical burning, cone calorimeter, and thermogravimetric analysis (TGA) tests. The IFR system presented the most effective flame retardancy in PA6 when the weight ratio of APP to HCFA was 2:1. The LOI value of IFR‐PA6 could reach 36.5 with V‐0 rating when the IFR loading was 30 wt%. Even if the loading decreased to 25 wt%, IFR‐PA6 could still maintain V‐0 rating with an LOI value of 31. TGA curves indicated that APP would interact with both PA6 and HCFA in PA6/APP/HCFA composite under heating. The interaction between APP and HCFA improved the char formation ability of IFR system and then much more char was formed for PA6/APP/HCFA composite than for PA6/APP. Therefore, better flame retardancy was achieved. Moreover, the structure and morphology of char residue were studied by Fourier transform infrared (FTIR), X‐ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The results indicated that compact and foaming char layer containing P‐O‐C structure was formed for PA6/APP/HCFA system during combustion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号