首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study reports 5 years of (1998-2003) data on continuous solar-irradiation measurements from a scanning spectroradiometer (SUV-100) in Valdivia, Chile (39 degrees S), accompanied by evaluation of the impact of ultraviolet radiation (UVR) on marine macroalgae of this site. UVR conditions showed a strong seasonal variation, which was less pronounced toward longer wavelengths. Daily maximum dose rates (clear days) averaged in winter-summer: UV-B(290-315 nm) 0.30-2.1, UV-B(290-320 nm) 0.70-3.7, UV-A(315-400 nm) 20.6-62.1, UV-A(320-400 nm) 20.2-60.5 W m(-2), and photosynthetically active radiation (PAR) 969-2423 micromol m(-2) s(-1). The corresponding daily doses (all the days) ranged: UV-B(290-315 nm) 2.6-40.7, UV-B(290-320 nm) 6.7-78.5, UV-A(315-400 nm) 228-1539, UV-A(320-400 nm) 224-1501, and PAR 2008-13308 kJ m(-2) d(-1). Taking into consideration action spectra of a biological interest, the risk of UV exposure could be up to 37 times higher in summer than in winter. The photosynthetic activity (as maximum quantum yield of chlorophyll fluorescence, F(v)/F(m)) of the brown alga Lessonia nigrescens from the infralittoral zone was markedly more sensitive to UVR than of the green alga Enteromorpha intestinalis from the upper midlittoral, and the UV-B wave band increased markedly photoinhibition. In L. nigrescens, maximal photoinhibition (40%) took place at weighted (the action spectrum for photoinhibition of photosynthesis) UVR doses of 800 kJ m(-2), irrespective of the season (corresponding midsummer daily dose in Valdivia is 480 kJ m(-2)). In winter, when this alga was at its most sensitive, the weighted UV dose causing 35-40% photoinhibition was around 200 kJ m(-2). In E. intestinalis, weighted doses of 800 kJ m(-2) resulted in low photoinhibition (<10 %) and no clear seasonal patterns could be inferred. These results confirm that midday summer levels of UV-B and their daily doses in southern Chile are high enough to produce stress to intertidal macroalgae.  相似文献   

2.
The solar ultraviolet radiation (UVR) exposure of 30 children and adolescents in three age groups (4-6 years, 7-9 years and 13-14 years) was measured for 1 week in late summer (February-March) in Durban, South Africa, using UVR-sensitive polysulfone film badges (PSFB) attached to the lapel region of the body. The mean and median values for all ages over the study period were 2.0 and 1.2 standard erythemal dose (SED) units, respectively, where 1 SED = 100 J x m(-2). Individual PSFB doses were analyzed as a function of age, gender and behavior. No significant statistical differences were found between different age groups; however, there was a statistical difference between males and females, with males generally receiving higher PSFB doses. Subjects completed UVR exposure journals documenting their time outdoors, shade versus sun conditions, nature of their activities, clothing worn and their use of sunscreen for each day of the study. Activity patterns were noted as the most important factor influencing individual UVR dose. Ambient erythemal UVR was measured by a Yankee Environmental Systems UVB pyranometer, and a relationship between ambient UVR and individual UVR dose was derived. On average, subjects received a dose of 4.6% of the total daily erythemal UVR. Based on this factor, the potential dose of an individual over a full annual cycle was estimated. Accordingly, there were 139 days during the year when an individual with skin type I (light skin) would be likely to experience minimal erythema and 97 and 32 days for individuals with skin types II and III, respectively.  相似文献   

3.
There is highly significant evidence that non-melanoma skin cancers are primarily due to chronic repeated exposure to solar ultraviolet radiation, and that there is a significant, although somewhat different relationship between solar radiation and the development of cutaneous malignant melanoma. Recent experimental and epidemiologic studies show that the biologically most effective UVR wavelengths are in the segment of the solar UVR spectrum that would be significantly augmented by decreases in stratospheric ozone content. A recent report on measurements of column ozone changes in the stratosphere has shown that in the past 18 yrs, there has been an ozone decrease between 2 and 3%, greater in the winter months, and somewhat differing with latitude in the Northern Hemisphere. Calculations of the relationship of ozone decrease to increase in biologically effective UVR show great dependence on the biologic action spectrum assumed. Based on extensive epidemiologic studies of skin cancer incidence, it appears that the estimated increase in biologically effective UVR due to the measured ozone decreases in the past (almost) two decades are not likely to be the cause of the sharp increase in skin cancer incidence which have been observed. Most likely these increases in incidence are the result of increasing personal exposure, due to striking changes in personal behavior that have taken place for social reasons. However, there is every reason to believe that increases in biologically effective UVR due to stratospheric ozone decreases will have significant impact on human skin cancer incidence in the future.  相似文献   

4.
Ultraviolet radiation (UVR) causes systemic immune suppression, decreasing the delayed type and contact hypersensitivity responses in animals and humans and enhancing certain mycobacterial, parasitic and viral infections in mice. This study tests the hypothesis that prior exposure to UVR enhances influenza infections in mice. BALB/c female mice were exposed to 0-8.2 kJ/m2 of UVR. Exposed and unexposed mice were infected intranasally three days later with 150-300 plaque-forming units/mouse (lethal dose (LD)20-LD40) of mouse-adapted Hong Kong Influenza A/68 (H3N2) virus or sham infected with 50 microL Hanks' balanced salt solution/mouse. Mortality from viral infection ranged from 25-50%. UVR exposure increased virus-associated mortality in a dose-dependent manner (up to a two-fold increase at 8.2 kJ/m2). The increased mortality was not associated with bacterial pneumonia. The highest dose of UVR also accelerated the body weight loss and increased the severity and incidence of thymic atrophy associated with influenza infection. However, UVR treatment had little effect on the increase in lung wet weight seen with viral infection, and, to our surprise, did not cause an increase in virus titers in the lung or dissemination of virus. The mice died 5-6 days after infection, too early for adaptive immune responses to have much impact. Also, UVR did not interfere with the development of protective immunity to influenza, as measured by reinfection with a lethal challenge of virus. Also, cells adoptively transferred from UVR or untreated mice were equally protective of recipient mice challenged with a lethal dose of virus. The mice resemble mice succumbing to endotoxin, and influenza infection increased the levels of tumor necrosis factor alpha (TNF-alpha) in bronchoalveolar lavage fluid and serum cortisol levels; however, UVR preexposure did not increase either of these responses to the virus. The results show that UVR increased the morbidity, mortality and pathogenesis of influenza virus in mice without affecting protective immunity to the virus, as measured by resistance to reinfection. The mechanism of enhanced mortality is uncertain, but the data raises concerns that UVR may exacerbate early responses that contribute to the pathogenesis of a primary viral infection.  相似文献   

5.
Penetration of ultraviolet radiation in the marine environment. A review   总被引:1,自引:0,他引:1  
UV radiation (UVR) is a significant ecological factor in the marine environment that can have important effects on planktonic organisms and dissolved organic matter (DOM). The penetration of UVR into the water column is likely to change in the near future due to interactions between global warming and ozone depletion. In this study we report underwater instruments employed for the measurement of UVR and we review data dealing with the depth of UVR penetration in different oceanic areas including the open ocean, Antarctic waters and coastal waters. We provide the 10% irradiance depth (Z10%) for UV-A and UV-B as well as for DNA damage effective dose (DNA), which we calculated from the values of diffuse attenuation coefficients or vertical profiles reported in the literature. We observe a clear distinction between open ocean (high Z10%, no variation in the ratio UV-B/UV-A), Antarctic waters (increase in the ratio UV-B/UV-A during ozone hole conditions) and coastal waters (low Z10%, no variation in the ratio UV-B/UV-A). These variations in the penetration of UVR could lead to differences in the relative importance of photobiological/photochemical processes. We also compare in this study the penetration of UV-B (unweighted and weighted by the Setlow action spectrum) and DNA damage effective dose.  相似文献   

6.
Comprehensive measures of ultraviolet radiation (UVR) exposure, concurrent activities and sun-protective practices are needed to develop and evaluate skin cancer prevention and sun protection interventions. The UVR exposures of 345 primary schoolchildren at 23 schools around New Zealand were measured using electronic UVR monitors for 1-week periods over 12 weeks in 2004 and 2005. In addition, ambient UVR levels on a horizontal surface were measured on-site at each school. Children completed activity diaries during the period UVR measurements were made and provided information on their indoor and outdoor status and clothing and sun protection worn. Mean total daily UVR exposure (7:00-20:00 h NZST + 1) at the body location where the UVR monitors were worn was 0.9 SED (standard erythemal dose, 1 SED = 100 J m(-2)). This was 4.9% of the ambient UVR on a horizontal surface. Mean time spent outdoors was 2.3 h day(-1). Differences in children's UVR exposure could be explained in part by activity, where outdoor passive pursuits were associated with higher UVR exposure rates than outdoor active and outdoor travel pursuits. Compared with older children, the activities of younger children, although labeled the same, resulted in different UVR exposures, either as a result of reporting differences or a real difference in UVR exposure patterns. UVR exposure rates were generally higher on weekdays compared with the weekend, confirming the important role of school sun protection and skin cancer prevention programs. High UVR exposure activities included physical education, athletics and lunch break.  相似文献   

7.
Solar ultraviolet radiation (UVR) exposure is a known risk factor for the development of skin cancer. Heterogeneity in solar UVR exposure may explain the diversity in skin cancer incidence between men and women. This, however, has not previously been investigated in Danish outdoor workers using UVR dosimetry. The aim of this study was to evaluate sex differences in solar UVR dosimetry in Danish outdoor workers on working and leisure days. A cross-sectional design was used to collect dosimetry data during the Danish summer season (May to September). Analysis was based on an electronic questionnaire and dosimetry data from 450 outdoor workers (88 women, 362 men). Dosimetry data were reported as standard erythema dose (SED). The daily median SED (Interquartile range) on working days was 1.6 (2.5) in men and 1.5 (2.1) in women while on leisure days it was 0.5 (1.4) in men and 0.6 (1.3) in women. Analysis by multiple linear regression did not show any association between daily median SED and sex on either working or leisure days. In conclusion, solar UVR exposure in Danish outdoor workers did not vary according to sex.  相似文献   

8.
The solar ultraviolet radiation (UVR) exposure of infants and small children was measured for 1 week using UVR-sensitive polysulfone film attached to the shoulder and chest of the subjects. For the infant study, shoulder and chest badges received similar exposures, while the 2 1/2-year-olds received higher exposures on the shoulder than on the chest. Also, the 2 1/2-year-olds generally received higher exposures than the infants. The median total daily exposures for both groups were 39 and 92 J/m2. The maximum total daily exposures measured were 640 J/m2 (chest) and 240 J/m2 (shoulder) for the infants and 2060 J/m2 (shoulder) and 840 J/m2 (chest) for the 2 1/2 year-olds. Using this exposure data, monthly and annual exposure doses were calculated for both groups and compared to similar data from the UK. The annual exposure dose for infants is 8.4 kJ/m2 or 84 standard erythemal dose (SED) for both shoulder and chest. The annual exposure dose for 2 1/2 year-old children is 39.4 kJ/m2 or 394 SED for the shoulder and 28.8 kJ/m2 or 288 SED for the chest. Apart from the generally higher annual exposure doses experienced by the infants and 2 1/2 year-old children in Townsville, the main difference to the UK is the almost nonexistent drop in monthly exposure doses between summer and winter in Townsville compared to the UK. In the UK, the winter-month exposure dose is only 0.5% of the summer-month dose. However, in Townsville it is around 40%.  相似文献   

9.
Sunlight plays an etiological role in the formation of skin cancers [Phys. Med. Biol. 24 (1979) 931]. Non-melanoma skin cancers commonly arise in sun-exposed parts of the body, especially on the head and neck regions [Int. J. Dermatol. 34 (6) (1995) 398] although the amount of sun exposure that is required for the formation of skin cancers is still unknown. It is known that the larger the dose of UVR, and in particular the erythemal action spectrum, the more likely it is to form the non-melanoma skin cancers, basal cell carcinomas (BCCs) and squamous cell carcinomas (SCCs). A number of regions on the face exhibit a seemingly high rate of occurrence of BCCs in relation to apparent direct exposure. One of these regions is the inner canthus located next to the eye on the bridge of the nose which has an occurrence rate of 7.1% of all BCCs that occur on the head and neck [Gen. Surg. 51 (6) (1981) 576, Aust. NZ J. Surg. 60 (1990) 855, Malignant Skin Tumours, Longman Singapore Publishers, Singapore, 1991]. The inner canthus seems to be well protected from large direct doses of ultraviolet radiation (UVR) and to explain the higher incidence of BCCs on the inner canthus it is proposed that a significant proportion of the incident UVR on the eye and surrounding areas is reflected onto the inner canthus. This paper presents a preliminary investigation of the contribution of UVR reflected to the inner canthus from the tear film covering the eye using a two-dimensional theoretical model on the horizontal plane (0 degrees elevation angle). Calculations show that up to 30% of the total radiation that is received on the inner canthus on a cellular level in this plane is reflected from the eye. A three-dimensional computer-generated ray tracing model of the eye, surrounding facial features and the inner canthus is being created to investigate the effect that these reflections have on the total dose of UVR.  相似文献   

10.
Melanoma incidence is increasing, with poor prognosis cases growing faster in California Hispanics than in non-Hispanic whites. Ultraviolet Radiation (UVR) exposure as a child has been found to disproportionately increase the risk of melanoma. To determine correlates of UVR exposure in this high-risk population, we conducted a study in predominately Hispanic 4th and 5th grade classrooms in Los Angeles County, a high UVR environment, during the spring. To address potential reporting bias, electronic UV dosimeters were utilized to objectively measure the association between UVR exposure and constructs (acculturation, sun protective behavior and knowledge, family interventions) obtained on baseline questionnaires (n = 125). Tanning attitude (wanting to get a tan) was associated with lower median time spent outside (1.73 min versus 22.17, AUC 82.08, Sensitivity 0.78, Specificity 0.73) and standard erythemal dose (SED) on weekends, but positively associated with sun protective knowledge. Sun protective knowledge and family discussion of sunscreen were also inversely associated with objectively measured time outside. Students spent a median 30.61 (IQR 19.88) minutes outside per day (SED 0.30, IQR 0.20), with only 35.70% of it occurring in nonschool hours. We determined the majority of UVR exposure in this population occurs at school, providing valuable guidance for future interventions.  相似文献   

11.
The ultraviolet radiation of type B (the UVB) stimulates both the production of vitamin D (VD) and the incorporation of erythema dose (ED). The UVA also contributes to ED. The turning point between the benefit of producing VD and the harm of incorporating ED cannot be determined easily. However, the casual behavior regarding the exposure to the Sun can be changed in order to improve the protoprotection attitudes and create a trend towards benefit. In the case, people living in the low latitudes should exposure themselves to the Sun for a determined time interval within the noon time and avoid the Sun in other periods. This would produce an adequate amount of VD through the VD dose (207–214 J m?2) against minimum ED (≈105 J m?2) for skin type II. For it, unprotected forearms and hands must be exposed to the noon Sun (cloudless) for 11 min (winter) and 5 min (summer). The exposure at other times different from noon can represent increases of up to 24% in ED and up to 12 times in the time interval to be in the Sun in relation to the minimum amounts of both ED and time interval at noon.  相似文献   

12.
The green anole (Anolis carolinensis) is the most northerly distributed of its Neotropical genus. This lizard avoids a winter hibernation phase by the use of sun basking behaviors. Inevitably, this species is exposed to high doses of ambient solar ultraviolet radiation (UVR). Increases in terrestrial ultraviolet-B (UV-B) radiation secondary to stratospheric ozone depletion and habitat perturbation potentially place this species at risk of UVR-induced immunosuppression. Daily exposure to subinflammatory UVR (8 kJ/m2/day UV-B, 85 kJ/m2/day ultraviolet A [UV-A]), 6 days per week for 4 weeks (total cumulative doses of 192 kJ/m2 UV-B, 2.04 x 10(3) kJ/m2 UV-A) did not suppress the anole's acute or delayed type hypersensitivity (DTH) response to horseshoe crab hemocyanin. In comparison with the available literature UV-B doses as low as 0.1 and 15.9 kJ/m2 induced suppression of DTH responses in mice and humans, respectively. Exposure of anoles to UVR did not result in the inhibition of ex vivo splenocyte phagocytosis of fluorescein labeled Escherichia coli or ex vivo splenocyte nitric oxide production. Doses of UV-B ranging from 0.35 to 45 kJ/m2 have been reported to suppress murine splenic/peritoneal macrophage phagocytosis and nitric oxide production. These preliminary studies demonstrate the resistance of green anoles to UVR-induced immunosuppression. Methanol extracts of anole skin contained two peaks in the ultraviolet wavelength range that could be indicative of photoprotective substances. However, the resistance of green anoles to UVR is probably not completely attributable to absorption by UVR photoprotective substances in the skin but more likely results from a combination of other factors including absorption by the cutis and absorption and reflectance by various components of the dermis.  相似文献   

13.
Patagonia area is located in close proximity to the Antarctic ozone "hole" and thus receives enhanced ultraviolet B (UV-B) radiation (280-315 nm) in addition to the normal levels of ultraviolet A (UV-A; 315-400 nm) and photosynthetically available radiation (PAR; 400-700 nm). In marine ecosystems of Patagonia, normal ultraviolet radiation (UVR) levels affect phytoplankton assemblages during the three phases of the annual succession: (1) prebloom season (late summer-fall), (2) bloom season (winter-early spring) and (3) postbloom season (late spring-summer). Small-size cells characterize the pre- and postbloom communities, which have a relatively high photosynthetic inhibition because of high UVR levels during those seasons. During the bloom, characterized by microplankton diatoms, photosynthetic inhibition is low because of the low UVR levels reaching the earth's surface during winter; this community, however, is more sensitive to UV-B when inhibition is normalized by irradiance (i.e. biological weighting functions). In situ studies have shown that UVR significantly affects not only photosynthesis but also the DNA molecule, but these negative effects are rapidly reduced in the water column because of the differential attenuation of solar radiation. UVR also affects photosynthesis versus irradiance (P vs E) parameters of some natural phytoplankton assemblages (i.e. during the pre- but not during the postbloom season). However, there is a significant temporal variability of P vs E parameters, which are influenced by the nutrient status of cells and taxonomic composition; taxonomic composition is in turn associated with the stratification conditions (e.g. wind speed and duration). In Patagonia, wind speed is one of the most important variables that conditions the development of the winter bloom by regulating the depth of the upper mixed layer (UML) and hence the mean irradiance received by cells. Studies on the interactive effects of UVR and mixing show that responses of phytoplankton vary according to the taxonomic composition and cell structure of assemblages; therefore cells use UVR if >90% of the euphotic zone is being mixed. In fact, cell size plays a very important role when estimating the impact of UVR on phytoplankton, with large cells being more sensitive when determining photosynthesis inhibition, whereas small cells are more sensitive to DNA damage. Finally, in long-term experiments, it was determined that UVR can shape the diatom community structure in some assemblages of coastal waters, but it is virtually unknown how these changes affect the trophodynamics of marine systems. Future studies should consider the combined effects of UVR on both phytoplankton and grazers to establish potential changes in biodiversity of the area.  相似文献   

14.
Photomovement measurements were carried out with swarmers of the brown algae Scytosiphon lomentaria (Lyngb.) Link and Petalonia fascia (O. F. Müll.) as a function of irradiance direction, photon irradiance, spectral composition and ultraviolet radiation (UVR, lambda=280-400 nm) dose. Swarmers from both species showed similar photomovement patterns: negative phototaxis occurred under photon irradiances of 10-90 micromol photons m(-2) s(-1), and no movement was observed at 190 micromol photons m(-2) s(-1). The translocational velocity measured between 10 and 90 micromol m(-2) s(-1) ranged from 100 to 200 microm s(-1). The accumulation of swarmers presented a peak at 450 nm (waveband of 50 nm), and smaller peaks at 400 and 500 nm; no effect was observed at wavelengths of 550 nm and above. The decline in phototactic index (an estimator of photomovement response) of swarmers was linearly correlated with the logarithm of UVR doses. These data were correlated with levels of natural solar radiation in the field. It is hypothesized that motility of swarmers could be a critical factor in the survival of these species under a scenario of increased UVR.  相似文献   

15.
Using information on solar irradiance at different latitudes derived from a radiative transfer model and a detailed in vivo action spectrum for immune suppression in a murine system, we report here calculations of the "biologically effective" irradiance of sunlight for immune suppression. From 40 degrees N to 40 degrees S in summer, under normal stratospheric ozone concentrations this value ranged from 0.27 W/m2 (40 degrees N or S) to a peak of 0.33 W/m2 (20 degrees N or S) predicting that 50% immune suppression in the Balb/c mouse would occur after 21-26 min of sunlight exposure within this latitude range. We also found that the most effective wavelengths for immune suppression shift from a peak of 270 nm in the laboratory to near 315 nm in sunlight. Furthermore, using ozone depletion scenarios of 5 to 20%, at latitudes 20 degrees S and 40 degrees N, a 0.6% increase in biologically effective irradiance levels of solar UVB for immune suppression was predicted for each 1% decrease of ozone. This value rose to a nearly 1% increase for each 1% decrease in ozone at 60 degrees N latitude in wintertime. These data indicate that activation of immune suppression, in a murine model, requires relatively low levels of sunlight and that these levels are easily obtainable over most of the populated regions of the world. Since a UVB-activated photoreceptor, urocanic acid, regulates immune suppression in mice and since this same compound exists on other mammalian skin, including human skin, suppression of the mammalian immune system is predicted to increase if substantial stratospheric ozone depletion takes place.  相似文献   

16.
Abstract— Anchovy and mackerel eggs and yolk-sac larvae were exposed to UV radiation in the bioactive band of wavelengths between 280 and 320 nm. the UV-B region of the spectrum. Irradiation levels were based upon predicted UV-B increases that would result from anthropogenic diminution of Earth's protective ozone shell. Dose-response relationships for mortality and histological and morphological effects were determined for two different spectral energy compositions, using FS-40 sunlamps and two filter combinations. Anchovy were more sensitive than mackerel to UV-B. Data for anchovy were analyzed in terms of DNA-effective doses, i.e. the integrated spectral thence (in J/m2/nm) with the energy at each nm weighted by its effectiveness relative to the Setlow generalized DNA action spectrum. Fifty per cent of anchovy survived a cumulative DNA effective dose of 1150J'm-2 over a 4-day period. In the surviving larvae. irradiation induced lesions in the brain and eye. caused marked dispersion of pigment within melanophores and retarded growth and development. At the lowest dosage used. 760 (J. m-2)DNA, growth was retarded and brain lesions occurred in anchovy. Calculations of Smith and Baker (in this issue) indicate that in clear ocean water a significant incidence of lesions and retardation of growth in anchovy could occur at the surface at a 25%, reduction in ozone and down to 3.5 m at a 50% reduction. Eggs and larvae of anchovy occur at these depths.  相似文献   

17.
Photoreactivation (PR) is an efficient survival mechanism that helps protect cells against the harmful effects of solar-ultraviolet (UV) radiation. The PR mechanism involves photolyase, just one enzyme, and can repair DNA damage, such as cyclobutane-pyrimidine dimers (CPD) induced by near-UV/blue light, a component of sunlight. Although the balance of near-UV/blue light and far-UV light reaching the Earth's surface could be altered by the atmospheric ozone layer's depletion, experiments simulating this environmental change and its possible effects on life have not yet been performed. To quantify the strength of UVB in sunlight reaching the Earth's surface, we measured the number of CPD generated in plasmid DNA after UVB irradiation or exposure to sunlight. To simulate the increase of solar-UV radiation resulting from the ozone layer depletion, Paramecium tetraurelia was exposed to UVB and/or sunlight in clear summer weather. PR recovery after exposure to sunlight was complete at a low dose rate of 0.2 J/m2 x s, but was less efficient when the dose rate was increased by a factor of 2.5 to 0.5 J/m2 x s. It is suggested that solar-UV radiation would not influence the cell growth of P. tetraurelia for the reason of high PR activity even when the ozone concentration was decreased 30% from the present levels.  相似文献   

18.
19.
Solar UVB radiation (280-320 nm) is known to have detrimental effects on marine phytoplankton. Associated with the seasonal ozone hole in Antarctica, stratospheric ozone depletion occasionally influences the sub-Antarctic (Beagle Channel, Argentina) region, enhancing levels of UVB. The primary objective of this work was to study the effects of several (i.e. 6-10) days of exposure to UVB on the taxonomic composition and photosynthetic inhibition of local phytoplankton communities. For different light treatments, fixed-depth incubations placed in an outdoors water tank were compared with incubations in 1900 L mesocosms, where vertical mixing was present. Phytoplankton growth was inhibited by UV radiation (UVR) in fixed-depth experiments but not in the mixed mesocosms. Under fixed and mixed conditions alike, photosynthesis was significantly inhibited by UVB at the beginning of the experiment but no longer after several days of exposure, suggesting that cells had acclimated to radiation conditions. There was a change in species composition in response to UVR exposure in both experiments, which likely explained acclimation. In the community exposed to fixed conditions this change was from a phytoflagellate-dominated assemblage to a community with high relative abundance of diatoms after 6 days of exposure. UVA was responsible for most of the observed growth inhibition; however, the reduction in photosynthesis was produced by UVB. The reasons behind this variability in responses to UVR are associated with species-specific sensitivity and acclimation, and the previous light history of cells. In the community exposed in mesocosms, an assemblage codominated by phytoflagellates and diatoms was observed at the beginning of the experiments. After 10 days of exposure, green algae (Eutreptiella sp.) had increased, and phytoflagellates were the dominant group. The synthesis of mycosporine-like amino acids (MAAs), antioxidant enzymes and photosynthetic antenna pigments, in relation to repair and protection processes, may explain the reduced inhibition of both growth and photosynthesis that was observed in the phytoplankton community after several days of exposure. For environments such as the Beagle Channel seasonally exposed to the ozone hole, the results obtained from the fixed-depth experiments show that species can cope with UVR by means of MAA synthesis, while mixing would primarily promote a change in species composition and defense strategies.  相似文献   

20.
BIOLOGICAL UV-DOSES AND THE EFFECT OF AN OZONE LAYER DEPLETION   总被引:2,自引:0,他引:2  
Effective UV-doses were calculated based on the integrated product of the biological action spectrum (the one proposed by IEC, which extends to 400 nm, was adopted) and the spectral irradiance. The calculations include absorption and scattering of UV-radiation in the atmosphere, both for normal ozone conditions as well as for a depleted ozone layer. For Scandinavian latitudes the effective annual UV-dose increases by approximately 4% per degrees of latitude towards the Equator. An ozone depletion of one percent increases the annual UV-dose by approximately 1% at 60 degrees N (increases slightly at lower latitudes). A large depletion of 50% over Scandinavia (60 degrees N) would give these countries an effective UV-dose similar to that obtained, with normal ozone conditions, at a latitude of 40 degrees N (California or the Mediterranean countries). The Antarctic ozone hole increases the annual UV-dose by 20 to 25% which is a similar increase as that attained by moving 5 to 6 degrees of latitude nearer the Equator. The annual UV-dose at higher latitudes is mainly determined by the summer values of ozone. Both the ozone values and the effective UV-doses vary from one year to another (within +/- 4%). No positive or negative trend is observed for Scandinavia from 1978 to 1988.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号