首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, the effect of supplemental LiClO4 electrolytes in KCl solutions used in roughening silver substrates by electrochemical triangular-wave oxidation-reduction cycles (ORC) on surface-enhanced Raman scattering (SERS) was first investigated. To prepare SERS-active substrates by ORC procedures, electrolytes of KCl were generally employed. In contrast, LiClO4 ones were unsuitable for producing SERS-active substrates. Encouragingly, SERS of Rhodamine 6G (R6G) adsorbed on the roughened Ag substrate prepared in an aqueous solution containing KCl and LiClO4 electrolytes exhibits a higher intensity by one order of magnitude, as compared with that of R6G adsorbed on a roughened Ag substrate prepared in a solution only containing KCl. Further investigations indicate that the oxidation state of Cl on the roughened Ag substrate demonstrates decided effects on this improved SERS.  相似文献   

2.
通过匹配激光光斑直径与胶体微球的尺寸, 设计制备了银纳米粒子的表面增强拉曼散射(SERS)基底, 并将其用于研究单个银纳米粒子簇的表面增强拉曼光谱. 在制备纳米粒子的过程中, 考察了等离子体刻蚀时间与银沉积厚度对“单”银纳米粒子结构与形貌的影响. 将吡啶、 巯基苯和罗丹明R6G作为SERS探针分子, 研究了其SERS效应, 通过荧光共振能量转移(FRET)机理, 实现了染料分子在单银纳米粒子簇上的SERS效应. SERS光谱测试与相关计算结果表明, 单个银纳米粒子簇的拉曼增强因子能够达到约106.  相似文献   

3.
In this work, the effects of preparation conditions used in roughening silver substrates by electrochemical triangular-wave oxidation-reduction cycles (ORC) on surface-enhanced Raman scattering (SERS) were first investigated. The optimum roughening conditions for obtaining strongest SERS of Rhodamine 6G (R6G) are as follows. Ag electrodes were cycled in deoxygenated aqueous solutions containing 0.1 M NaCl from −0.3 to +0.2 V versus Ag/AgCl at 25 mV s−1 for five scans. The SERS of R6G adsorbed on this optimum procedure-prepared roughened Ag substrate exhibits a higher intensity by one order of magnitude, as compared with that of R6G adsorbed on a normally roughened Ag substrate.  相似文献   

4.
In this work, Ag and Au nanoparticles-containing substrates were first developed for obtaining a stronger surface-enhanced Raman scattering (SERS) intensity of Rhodamine 6G (R6G) and reducing the limit of detection (LOD) of trace molecules. First, the optimum electrochemically roughening conditions employed on Ag substrates for obtaining strongest SERS of R6G were investigated. Then the optimally roughened Ag substrates were incubated in the prepared Cl- and Au-containing solutions for different couples of minutes to undergo the galvanic replacement reactions. Encouragingly, the SERS of R6G adsorbed on this roughened Ag substrate modified by the replacement of Ag with Au for 5 min exhibits a higher intensity by 8-fold of magnitude, as compared with the SERS of R6G adsorbed on an unmodified roughened Ag substrate. Moreover, the practical LOD of R6G can be reduced by one order of magnitude from 1 ppq to 0.1 ppq. Further investigations indicate that the compositions of complexes formed on the substrates demonstrate decided effects on the improved SERS.  相似文献   

5.
采用硼氢化钠还原硝酸银,用振荡器在不同转速下振荡得到单分散的银纳米微球和银纳米棒,再将银纳米微球及银纳米棒自组装于被3-氨丙基-三甲氧基硅烷(APTMS)修饰的玻璃基片上,制得了具有表面增强拉曼(SERS)活性的基底,分别以罗丹明6G(R6G)和罗丹明B(RB)为探针分子对这两种基底进行SERS活性检测,结果发现这两种基底均为较理想的SERS衬底。  相似文献   

6.
Nanosized surface-enhanced Raman scattering (SERS) substrates fabricated by the controlled growth of metal nanostructures on water-dispersed two-dimensional nanomaterials can open a new avenue for SERS analysis of liquid samples in biological fields. In this work, regular and uniform Ag nanostructures were grown on the surface of graphene oxide (GO) through a microwave-assisted hydrothermal method. Polyamidoamine (PAMAM) dendrimers were assembled on the surface of GO to form GO/PAMAM templates for growing Ag nanostructures, which are primarily comprised of Ag dimers and trimers. The prepared Ag/GO nanocomposites are highly dispersed and stable in aqueous solution and may be used as substrates for enhanced Raman detection of rhodamine 6?G (R6G) in aqueous solution. This special substrate provides high-performance SERS and suppresses R6G fluorescence in aqueous solution and is promising as a nanosized material for the enhanced Raman detection of liquid samples in biological diagnostics.  相似文献   

7.
The authors preparedlarge area surface-enhanced Raman scattering(SERS) active substrates with tunable enhancement. First the large area gratings were fabricated by scanning a photoresist with two-beam laser interference and subsequently they were coated with silver nano islands via vacuum evaporation. SERS active metal island grating substrates with four different periods(300, 400, 515 and 600 nm) and Ag nano islands uniformly coated on an area of 2.5 cm×0.5 cm were obtained. The measured SERS spectra reveal the tuning effect of the period on the Raman signals period. The highest enhancement(ca. 105) for Rhodamine 6G(R6G) as probing molecule is associated with a period of 515 nm due to the perfect matching of surface plasmons and Raman excitation line. A good reproducibility of SERS signals with almost the same SERS intensity at different spots was observed on all the larger area Ag island grating substrates.  相似文献   

8.
This communication describes a new surface-enhanced Raman scattering (SERS) active silver substrate prepared by iodination of the evaporated silver foil. After iodination, the morphology of the silver substrate undergoes a self-evolution process in which it displays accordingly the UV-vis absorption shift as well as the AFM topological test. Rhodamine 6G (R6G) is used as the probe molecule to evaluate the enhancement efficiency of the silver substrate at different self-evolution time intervals. The SERS intensity of R6G increases up to ~29-fold and reaches a maximum after the substrate evolved for 24 h. This method is feasible for the production of an efficient SERS silver substrate.  相似文献   

9.
《Vibrational Spectroscopy》2000,22(1-2):39-48
Surface Enhanced Raman Spectroscopy (SERS) is a valuable analytical tool for the investigation of molecules adsorbed on roughened noble metal surfaces. The shape, size, and surrounding of the metal protrusions play an important role in the Raman scattering enhancement. By combining scanning near-field optical microscopy (SNOM) with Raman spectroscopy the spatial resolution suffices for investigating isolated silver islands on SERS active substrates. We demonstrate an optical resolution below 70 nm for recording spectra on specifically prepared and fully characterized SERS substrates. For a quantitative evaluation of the SERS signal the spatial distribution of Rhodamine 6G (R6G) deposited on the SERS substrate was determined by friction force measurements. By comparing the Raman intensities of the SERS substrates with those of unmetallized support plates absolute SERS enhancement factors at specific locations on top and in the vicinity of the silver islands were determined directly.  相似文献   

10.
罗丹明6G(Rhodamine 6G,R6G)是单分子表面增强拉曼光谱(SM-SERS)研究中最常用的探针分子之一,对R6G分子在表面吸附行为的研究有助于了解R6G分子和表面的相互作用. 本文应用电化学和电化学表面增强拉曼光谱技术,研究不同电位下R6G的银电极表面的吸附行为. 结果表明,随着电位负移罗丹明6G在银表面上从垂直吸附转为倾斜吸附,该变化和碱性条件下吸附于金纳米粒子上R6G的吸附构象一致. 这说明,在部分单分子实验中所发现的R6G反常光谱其来源是单个R6G分子在表面吸附取向变化. 本研究对后续详细分析SM-SERS研究中单分子SERS谱峰变化的机制有一定的参考价值.  相似文献   

11.
The flower-like silver nanoparticles have been synthesized by reducing silver nitrate (AgNO3) with ascorbic acid (AA) as the reductant and polyvinyl pyrrolidone (PVP) as the capping agent under vigorous stirring. Such flower-like nanoparticles are aggregates of small nanoplates and nanorods. They were tested as substrates for the surface-enhanced Raman scattering (SERS), showing high sensitivity for detecting Rhodamine 6G (R6G) at a concentration as low as 10-7 mol/L. It has been found that replacing mechanical stirring with ultrasound sonication would drastically change the particle morphology, from flower-like nanoparticles to well-dispersed smaller nanoparticles. Furthermore, when trace amounts of NaCl were added into the reagents, well-dispersed Ag nanoparticles formed even in vigorous stirring. These phenomena can be explained with the diffusion and reactant supply during nucleation and growth of Ag nanoparticles.  相似文献   

12.
We have recorded surface-enhanced Raman (SER) spectra of two different classes of compounds, cationic dyes and organic acids, and studied their chloride ion effects on the surface-enhanced Raman scattering (SERS) activities of the silver solution. For the positive charge dyes, rhodamine 6G (R6G) and 1,1'-dimethyl-2,2'-cyanine iodide (DECI), no SERS could be observed without the addition of chloride ions because of lack of the electrostatic interaction between the dye species and the silver particles in the silver solution. The chloride ions served to enlarge silver particles and to contribute the existence of the surface active sites, making the silver solution SERS active to the dye samples. Surface-enhanced resonance Raman scattering (SERRS) intensity of the dye molecules increased with the chloride ion concentration. After reaching a maximum intensity, a Cl- quenching effect on the intensity took place. For the organic acids, benzoic acid and p-aminobenzoic acid (PABA), SERS could be observed without the coexistence of chloride ions. The intensity of the Raman scattering did not vary significantly in the presence of small amount of chloride ion. At high Cl- concentration, quenching SERS intensity began to take effect.  相似文献   

13.
This article reports the designed preparation of two different kinds of novel porous metal nanostructured films, namely, an ordered macroporous Au/Ag nanostructured film and an ordered hollow Au/Ag nanostructured film. Different from previous reports, the presently proposed method can be conveniently used to control film structures by simply varying the experimental conditions. The morphology of these films has been characterized by scanning electron microscopy (SEM), and their performance as surface-enhanced Raman scattering (SERS) substrates has been evaluated by using rhodamine 6G (R6G) as a probe molecule. We show that such porous nanostructured films consisting of larger interconnected aggregates are highly desirable as SERS substrates in terms of high Raman intensity enhancement, excellent stability, and reproducibility. The interconnected nanostructured aggregate, long-range ordering porosity, and nanoscale roughness are important factors responsible for this large SERS enhancement ability.  相似文献   

14.
利用两电极电化学沉积法制备出一种树枝状银微纳结构基体.扫描电子显微镜(SEM)的表征结果证实所制备的银基体呈现出完整的树枝状结构,具有对称性的树枝和树干,且树叶清晰可见.实验结果表明,树枝状银微纳结构的表面增强拉曼散射(Surface-enhanced Raman scattering,SERS)可以检测到超低浓度的罗丹明6G(Rhodamine 6G,R6G,10-10 mol/L)光谱信号,即树枝状银微纳结构作为SERS基体表现出较好的灵敏性;当R6G的浓度在10-5~10-10 mol/L范围依次降低一个数量级时,谱带610 cm-1处的拉曼散射强度的相对标准偏差分别为12.1%,12.0%,11.7%,10.9%,13.2%和14.3%,表明所制备银基体的SERS"热点"(Hot spots)分布较均一,树枝状银微纳结构作为SERS基体具有较好的重现性;当低SERS活性的3-巯基丙酸(3-Mercaptopropionic acid,3MPA)的检测浓度为10-5 mol/L时,利用树枝状银基体能检测到3MPA的SERS光谱,说明所制备的银基体对低活性物质也具有较好的SERS灵敏性.  相似文献   

15.
In this paper, we propose two new approaches for preparing active substrates for surface-enhanced Raman scattering (SERS). In the first approach (method 1), one transfers AgI nanoparticles capped by negatively charged mercaptoacetic acid from a AgI colloid solution onto a quartz slide and then deoxidizes AgI to Ag nanoparticles on the substrate. The second approach (method 2) deoxidizes AgI to Ag nanoparticles in a colloid solution and then transfers the Ag nanoparticles capped by negatively charged mercaptoacetic acid onto a quartz slide. By transfer of the AgI/Ag nanoparticles from the colloid solutions to the solid substrates, the problem of instability of the colloid solutions can largely be overcome. The films thus prepared by both approaches retain the merits of metal colloid solutions while they discharge their shortcomings. Accordingly, the obtained Ag particle films are very suitable as SERS active substrates. SERS active substrates with different coverages can be formed in a layer-by-layer electrostatic assembly by exposing positively charged surfaces to the colloid solutions containing oppositely charged AgI/Ag nanoparticles. The SERS active substrates fabricated by the two novel methods have been characterized by means of atomic force microscopy (AFM) and ultraviolet-visible (UV-vis) spectroscopy. The results of AFM and UV-vis spectroscopy show that the Ag nanoparticles grow with the increase in the number of coverage and that most of them remain isolated even at high coverages. Consequently, the surface optical properties are dominated by the absorption due to the isolated Ag nanoparticles. The relationship between SERS intensity and surface morphology of the new active substrates has been investigated for Rhodamine 6G (R6G) adsorbed on them. It has been found that the SERS enhancement depends on the size and aggregation of the Ag particles on the substrates. Especially, we can obtain a stronger SERS signal from the substrate prepared by method 1, implying that for the metal nanoparticles capped with stabilizer molecules such as mercaptoacetic acid, the in situ deoxidization in the film is of great use in preparing SERS active substrates. Furthermore, we have found that the addition of Cl- into the AgI colloid solution changes the surface morphology of the SERS active substrates and favors stronger SERS enhancement.  相似文献   

16.
Femtosecond laser was employed to fabricate nanostructured Ag surface for surface-enhanced Raman scattering (SERS) application. The prepared nanostructured Ag surface was characterized by field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The FESEM images demonstrate the formation of nanostructure-covered femtosecond laser-induced periodic surface structure, also termed as ripples, on the Ag surface. The AFM images indicate that the surface roughness of the produced nanostructured Ag substrate is larger than the untreated Ag substrate. The XRD and XPS of the nanostructured Ag surface fabricated by femtosecond laser show a face centered cubic phase of metallic Ag and no impurities of Ag oxide species. The application of the produced nanostructured Ag surface in SERS was investigated by using rhodamine 6G (R6G) as a reference chemical. The SERS intensity of R6G in aqueous solution at the prepared nanostructured Ag surface is 15 times greater than that of an untreated Ag substrate. The Raman intensities vary linearly with the concentrations of R6G in the range of 10(-8)-10(-4)M. The present methodology demonstrates that the nanostructured Ag surface fabricated by femtosecond laser is potential for qualification and quantification of low concentration molecules.  相似文献   

17.
After over 30 years of development, surface-enhanced Raman spectroscopy (SERS) is now facing a very important stage in its history. The explosive development of nanoscience and nanotechnology has assisted the rapid development of SERS, especially during the last 5 years. Further development of surface-enhanced Raman spectroscopy is mainly limited by the reproducible preparation of clean and highly surface enhanced Raman scattering (SERS) active substrates. This review deals with some substrate-related issues. Various methods will be introduced for preparing SERS substrates of Ag and Au for analytical purposes, from SERS substrates prepared by electrochemical or vacuum methods, to well-dispersed Au or Ag nanoparticle sols, to nanoparticle thin film substrates, and finally to ordered nanostructured substrates. Emphasis is placed on the analysis of the advantages and weaknesses of different methods in preparing SERS substrates. Closely related to the application of SERS in the analysis of trace sample and unknown systems, the existing cleaning methods for SERS substrates are analyzed and a combined chemical adsorption and electrochemical oxidation method is proposed to eliminate the interference of contaminants. A defocusing method is proposed to deal with the laser-induced sample decomposition problem frequently met in SERS measurement to obtain strong signals. The existing methods to estimate the surface enhancement factor, a criterion to characterize the SERS activity of a substrate, are analyzed and some guidelines are proposed to obtain the correct enhancement factor.  相似文献   

18.
In this work, the effects of electrolytes used in roughening gold substrates by electrochemical methods on surface-enhanced Raman scattering (SERS) were first investigated. First, gold substrates were roughened by triangular-wave oxidation–reduction cycles (ORC) in aqueous solutions containing different kinds of 0.1 M electrolytes. Then Rhodamine 6G (R6G) was used as Raman probe to examine this effect of electrolytes used on the SERS observed. The result indicates that the highest intensity of SERS of R6G was obtained on the roughened Au substrate prepared in 0.1 M NaCl, which was less used in the literature. Meanwhile, it was also found that the rougher surface morphology observed, which is contributive to the higher SERS obtained, is corresponding to the smaller cathodic peak area shown in the cyclic voltammograms for roughening the Au substrate.  相似文献   

19.
以硅纳米孔柱阵列(Si-NPA)为基底, 采用浸渍沉积技术制备了具有较高表面增强拉曼散射(SERS)活性的Ag/Si-NPA衬底, 并采用扫描电子显微镜和透射电子显微镜对其表面形貌和结构进行了表征. 在此基础上, 选择罗丹明6G(R6G)和结晶紫(CV)2种生物染料分子并采用不同的混合吸附程序对其共吸附状态下的SERS光谱进行了探测. 结果表明, 当2种分子的溶液浓度均为10-7 mol/L时, 无论采用何种浸渍吸附程序, 其SERS谱中CV的特征拉曼峰都被R6G完全掩盖. 对溶液采用错级配置(R6G和CV的浓度分别为10-9和10-7 mol/L)后, 所测SERS谱上获得了分别对应于R6G和CV的分离良好、相对强度匹配、分辨率高的2个SERS特征峰组, 从而有利于简化现实混合探测过程中对SERS特征峰的指认和判断.  相似文献   

20.
利用简易、绿色、一锅煮的水热法合成了花状氧化锌/银复合纳米材料。然后利用各种光谱和显微技术对复合物进行了表征,并讨论了其表面增强拉曼(SERS)性能和光催化性能。结果表明氢氧化钠的量对于这种复合纳米材料的形貌和性能具有重要的调节作用。和其他形貌的氧化锌/银复合纳米材料相比较,花状氧化锌/银复合纳米材料具有最佳的光催化性能。同时进一步以花状氧化锌/银复合纳米材料作为SERS基底研究其表面增强拉曼性能,结果表明这种复合材料同时具有很好的表面增强拉曼性能。光催化和表面增强拉曼结果表明这种花状氧化锌/银复合纳米材料有望在有机物检测中作为一种具有很好的可循环性的新表面增强拉曼基底材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号