首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigates the multi-solution search of the optimized quantum random-walk search algorithm on the hypercube. Through generalizing the abstract search algorithm which is a general tool for analyzing the search on the graph to the multi-solution case, it can be applied to analyze the multi-solution case of quantum random-walk search on the graph directly. Thus, the computational complexity of the optimized quantum random-walk search algorithm for the multi-solution search is obtained. Through numerical simulations and analysis, we obtain a critical value of the proportion of solutions q. For a given q, we derive the relationship between the success rate of the algorithm and the number of iterations when q is no longer than the critical value.  相似文献   

2.
This paper investigates the effects of decoherence generated by broken-link-type noise in the hypercube on an optimized quantum random-walk search algorithm. When the hypercube occurs with random broken links, the optimized quantum random-walk search algorithm with decoherence is depicted through defining the shift operator which includes the possibility of broken links. For a given database size, we obtain the maximum success rate of the algorithm and the required number of iterations through numerical simulations and analysis when the algorithm is in the presence of decoherence. Then the computational complexity of the algorithm with decoherence is obtained. The results show that the ultimate effect of broken-link-type decoherence on the optimized quantum random-walk search algorithm is negative.  相似文献   

3.
First results on electric field induced aggregation in a novel colloidal film are presented. The aggregate appears as a dark structure on the shiny background of the metallic colloidal film that forms at the interface between two immiscible liquids. A variety of shapes are observed, ranging from compact circular, to highly ramified dendritic ones, depending on control parameters such as voltage and chemical composition. The aggregation process was investigated for a wide range of parameters by video photography and subsequent pattern analysis, as well as by Auger spectroscopic measurements of dried samples. A new type of mechanism—a combination of electroaggregation of the colloid particles and electrodeposition of metal ions—is proposed to account for the observations.  相似文献   

4.
5.
We introduce a multiscale Monte Carlo algorithm to simulate dense simple fluids. The probability of an update follows a power law distribution in its length scale. The collective motion of clusters of particles requires generalization of the Metropolis update rule to impose detailed balance. We apply the method to the simulation of a Lennard-Jones fluid and show improvements in efficiency over conventional Monte Carlo and molecular dynamics simulations, eliminating hydrodynamic slowing down.  相似文献   

6.
Interfacial patterns arise due to the dynamical evolution of phase boundaries in physical, chemical and biological systems. Coupled map lattices (CML) offer a useful tool for the simulation of such systems, being able to naturally accommodate the disparate length and time scales inherent in the dynamics of these processes. We illustrate this idea by reviewing work done on applying CML methods to crystal growth and to excitable media.  相似文献   

7.
8.
We present a new algorithm to numerically simulate two-dimensional viscous incompressible flows with moving interfaces. The motion is updated in time by using the backward difference formula through an iterative procedure. At each iteration, the pseudo-spectral technique is applied in the horizontal direction. The resulting semi-discretized equations constitute a boundary value problem in the vertical coordinate which is solved by decoupling growing and decaying solutions. Numerical tests justify that this method achieves fully second-order accuracy in both the temporal variable and vertical coordinate. As an application of this algorithm, we study the motion of Stokes waves in the presence of viscosity. Our numerical results are consistent with the recently published asymptotic solution for Stokes waves in slightly viscous fluids.  相似文献   

9.
We review recent results on dynamical aspects of viscous fingering. The Saffman-Taylor instability is studied beyond linear stability analysis by means of a weakly nonlinear analysis and the exact determination of the subcritical branch. A series of contributions pursuing the idea of a dynamical solvability scenario associated to surface tension in analogy with the traditional selection theory is put in perspective and discussed in the light of the asymptotic theory of Tanveer and co-workers. The inherently dynamical singular effects of surface tension are clarified. The dynamical role of viscosity contrast is explored numerically. We find that the basin of attraction of the Saffman-Taylor finger depends on viscosity contrast, and that the sensitivity to this parameter is maximal in the usual limit of high viscosity contrast. The competing attractors are identified as closed bubble solutions. We briefly report on recent results and work in progress concerning rotating Hele-Shaw flows, topological singularities and wetting effects, and also discuss future directions in the context of viscous fingering.  相似文献   

10.
《Physics of life reviews》2014,11(3):467-525
Pest insects pose a significant threat to food production worldwide resulting in annual losses worth hundreds of billions of dollars. Pest control attempts to prevent pest outbreaks that could otherwise destroy a sward. It is good practice in integrated pest management to recommend control actions (usually pesticides application) only when the pest density exceeds a certain threshold. Accurate estimation of pest population density in ecosystems, especially in agro-ecosystems, is therefore very important, and this is the overall goal of the pest insect monitoring. However, this is a complex and challenging task; providing accurate information about pest abundance is hardly possible without taking into account the complexity of ecosystems' dynamics, in particular, the existence of multiple scales. In the case of pest insects, monitoring has three different spatial scales, each of them having their own scale-specific goal and their own approaches to data collection and interpretation. In this paper, we review recent progress in mathematical models and methods applied at each of these scales and show how it helps to improve the accuracy and robustness of pest population density estimation.  相似文献   

11.
An efficient algorithm is presented for calculating motionally averaged powder patterns for two- or three-site exchange. It reduces the required CPU time by constructing a matrix which describes the change in chemical shift with exchange for all orientations to the field. The powder pattern is then calculated from this matrix via Bloch's equations including exchange. This approach allows the mean chemical shift of the species undergoing exchange to be eliminated from the calculation, which is then only dependent on the chemical-shift difference between the species, and the exchange rate. The application of the algorithm to motional averaging by molecular jump reorientations is described in detail.  相似文献   

12.
13.
We present a revision to the well known Störmer–Verlet algorithm for simulating second order differential equations. The revision addresses the inclusion of linear friction with associated stochastic noise, and we analytically demonstrate that the new algorithm correctly reproduces diffusive behaviour of a particle in a flat potential. For a harmonic oscillator, our algorithm provides the exact Boltzmann distribution for any value of damping, frequency and time step for both underdamped and overdamped behaviour within the usual stability limit of the Verlet algorithm. Given the structure and simplicity of the method, we conclude that this approach can trivially be adapted for contemporary applications, including molecular dynamics with extensions such as molecular constraints.  相似文献   

14.
Vesicles are locally-inextensible fluid membranes that can sustain bending. In this paper, we extend the study of Veerapaneni et al. [S.K. Veerapaneni, D. Gueyffier, G. Biros, D. Zorin, A numerical method for simulating the dynamics of 3D axisymmetric vesicles suspended in viscous flows, Journal of Computational Physics 228 (19) (2009) 7233–7249] to general non-axisymmetric vesicle flows in three dimensions.  相似文献   

15.
Lushnikov PM 《Optics letters》2002,27(11):939-941
An efficient numerical algorithm is presented for massively parallel simulations of dispersion-managed wavelength-division-multiplexed optical fiber systems. The algorithm is based on a weak nonlinearity approximation and independent parallel calculations of fast Fourier transforms on multiple central processor units (CPUs). The algorithm allows one to implement numerical simulations M/2 times faster than a direct numerical simulation by a split-step method, where M is a number of CPUs in a parallel network.  相似文献   

16.
In the production of biosensors or artificial tissues a basic step is the immobilization of living cells along the required pattern. In this paper the ability of some promising laser-based methods to influence the interaction between cells and various surfaces is presented. In the first set of experiments laser-induced patterned photochemical modification of polymer foils was used to achieve guided adherence and growth of cells to the modified areas: (a) Polytetrafluoroethylene was irradiated with ArF excimer laser (λ=193 nm, FWHM=20 ns, F=9 mJ/cm2) in presence of triethylene–tetramine liquid photoreagent; (b) a thin carbon layer was produced by KrF excimer laser (λ=248 nm, FWHM=30 ns, F=35 mJ/cm2) irradiation on polyimide surface to influence the cell adherence. It was found that the incorporation of amine groups in the PTFE polymer chain instead of the fluorine atoms can both promote and prevent the adherence of living cells (depending on the applied cell types) on the treated surfaces, while the laser generated carbon layer on polyimide surface did not effectively improve adherence. Our attempts to influence the cell adherence by morphological modifications created by ArF laser irradiation onto polyethylene–terephtalate surface showed a surface–roughness dependence. This method was effective only when the Ra roughness parameter of the developed structure did not exceed the 0.1 micrometer value. Pulsed laser deposition with femtosecond KrF excimer lasers (F=2.2 J/cm2) was effectively used to deposit structured thin films from biomaterials (endothelial cell growth supplement and collagen embedded in starch matrix) to promote the adherence and growth of cells. These results present evidence that some surface can be successfully altered to induce guided cell growth.  相似文献   

17.
杜萌  金宁德  高忠科  朱雷  王振亚 《物理学报》2012,61(23):113-121
采用多尺度排列熵算法研究了垂直油水两相流水包油流型的多尺度动力学特性.首先,在内径为20 mm的垂直管道内采集了油水两相流水包油流型电导传感器波动信号,然后计算了不同流动工况下电导波动信号的多尺度排列熵值.研究发现多尺度排列熵率与均值可定量刻画水包油流型动力学复杂性;此外,提出了通过增量时间序列累积量与多尺度排列熵率联合分布识别三种不同水包油流型的新途径.  相似文献   

18.
19.
Pattern formation in a nonlinear damped Mathieu-type partial differential equation defined on one space variable is analyzed. A bifurcation analysis of an averaged equation is performed and compared to full numerical simulations. Parametric resonance leads to periodically varying patterns whose spatial structure is determined by amplitude and detuning of the periodic forcing. At onset, patterns appear subcritically and attractor crowding is observed for large detuning. The evolution of patterns under the increase of the forcing amplitude is studied. It is found that spatially homogeneous and temporally periodic solutions occur for all detuning at a certain amplitude of the forcing. Although the system is dissipative, spatial solitons are found representing domain walls creating a phase jump of the solutions. Qualitative comparisons with experiments in vertically vibrating granular media are made. (c) 2001 American Institute of Physics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号