首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nonlinear critical layer theory is developed for the case where the critical point is close enough to a solid boundary so that the critical layer and viscous wall layers merge. It is found that the flow structure differs considerably from the symmetric “eat's eye” pattern obtained by Benney and Bergeron [1] and Haberman [2]. One of the new features is that higher harmonics generated by the critical layer are in some cases induced in the outer flow at the same order as the basic disturbance. As a consequence, the lowest-order critical layer problem must be solved numerically. In the inviscid limit, on the other hand, a closed-form solution is obtained. It has continuous vorticity and is compared with the solutions found by Bergeron [3], which contain discontinuities in vorticity across closed streamlines.  相似文献   

2.
For sufficiently high Mach numbers, small disturbances on a supersonic vortex sheet are known to grow in amplitude because of slow nonlinear wave steepening. Under the same external conditions, linear theory predicts slow growth of long-wave disturbances to a thin supersonic shear layer. An asymptotic formulation that adds nonzero shear-layer thickness to the weakly nonlinear formulation for a vortex sheet is given here. Spatial evolution is considered for a spatially periodic disturbance having amplitude of the same order, in Reynolds number, as the shear-layer thickness. A quasi-equilibrium inviscid nonlinear critical layer is found, with effects of diffusion and slow growth appearing through a nonsecularity condition. Other limiting cases are also considered, in an attempt to determine a relationship between the vortex-sheet limit and the long-wave limit for a thin shear layer; there appear to be three special limits, corresponding to disturbances of different amplitudes at different locations along the shear layer.  相似文献   

3.
The full nonlinear initial-boundary value problem for the evolution of disturbances in plane Poiseuille flow is considered. The problem is formulated in vector form using the normal velocity and normal vorticity as components. The solution is presented as an expansion in linear eigenmodes. These modes consist of both Orr-Sommerfeld modes and modes of the normal vorticity (Squire) equation. The case of degenerating eigenmodes is also considered and it is shown that the Benney-Gustavsson normal velocity-normal vorticity resonance is a special case of a degeneracy between the vector eigenmodes. The solution to the nonlinear problem is presented as an expansion in the linear eigenmodes as well as in modes of the self-adjoint part of the linear equation. The full nonlinear solution is further reduced to small systems of coupled amplitude equations using the center manifold theorem.  相似文献   

4.
The nonlinear evolution of long-wavelength non stationary cross-flow vortices in a compressible boundary layer is investigated; the work extends that of Gajjar [1] to flows involving multiple critical layers. The basic flow profile considered in this paper is that appropriate for a fully three-dimensional boundary layer with O(1) Mach number and with wall heating or cooling. The governing equations for the evolution of the cross-flow vortex are obtained, and some special cases are discussed. One special case includes linear theory, where exact analytic expressions for the growth rate of the vortices are obtained. Another special case is a generalization of the Bassom and Gajjar [2] results for neutral waves to compressible flows. The viscous correction to the growth rate is derived, and it is shown how the unsteady nonlinear critical layer structure merges with that for a Haberman type of viscous critical layer.  相似文献   

5.
There are many fluid flows where the onset of transition can be caused by different instability mechanisms which compete in the nonlinear regime. Here the interaction of a centrifugal instability mechanism with the viscous mechanism which causes Tollmien-Schlichting waves is discussed. The interaction between these modes can be strong enough to drive the mean state; here the interaction is investigated in the context of curved channel flows so as to avoid difficulties associated with boundary layer growth. Essentially it is found that the mean state adjusts itself so that any modes present are neutrally stable even at finite amplitude. In the first instance the mean state driven by a vortex of short wavelength in the absence of a Tollmien-Schlichting wave is considered. It is shown that for a given channel curvature and vortex wavelength there is an upper limit to the mass flow rate which the channel can support as the pressure gradient is increased. When Tollmien-Schlichting waves are present then the nonlinear differential equation to determine the mean state is modified. At sufficiently high Tollmien-Schlichting amplitudes it is found that the vortex flows are destroyed, but there is a range of amplitudes where a fully nonlinear mixed vortex-wave state exists and indeed drives a mean state having little similarity with the flow which occurs without the instability modes. The vortex and Tollmien-Schlichting wave structure in the nonlinear regime has viscous wall layers and internal shear layers; the thickness of the internal layers is found to be a function of the Tollmien-Schlichting wave amplitude.  相似文献   

6.
The nonlinear stability of arbitrary mixing-layer profiles in an incompressible, homogeneous fluid is studied in the high-Reynolds-number limit where the critical layer is linear and viscous. The type of bifurcation from the marginal state is found to depend crucially on the symmetry properties of the basic-state profile. When the vorticity profile of the mean flow is perfectly symmetric, the bifurcation is stationary. When the symmetry of the profile is broken, the bifurcation is Hopf. The nonsymmetry of the mixing layer also introduces some changes in the critical layer and the matching of flow quantities across it.  相似文献   

7.
Vortex Rossby waves in cyclones in the tropical atmosphere are believed to play a role in the observed eyewall replacement cycle, a phenomenon in which concentric rings of intense rainbands develop outside the wall of the cyclone eye, strengthen and then contract inward to replace the original eyewall. In this paper, we present a two‐dimensional configuration that represents the propagation of forced Rossby waves in a cyclonic vortex and use it to explore mechanisms by which critical layer interactions could contribute to the evolution of the secondary eyewall location. The equations studied include the nonlinear terms that describe wave‐mean‐flow interactions, as well as the terms arising from the latitudinal gradient of the Coriolis parameter. Asymptotic methods based on perturbation theory and weakly nonlinear analysis are used to obtain the solution as an expansion in powers of two small parameters that represent nonlinearity and the Coriolis effects. The asymptotic solutions obtained give us insight into the temporal evolution of the forced waves and their effects on the mean vortex. In particular, there is an inward displacement of the location of the critical radius with time which can be interpreted as part of the secondary eyewall cycle.  相似文献   

8.
Using a nonlinear critical layer analysis, we examine the behavior of disturbances to the Holmboe model of a stratified shear layer for Richardson numbers 0相似文献   

9.
Primary instability of rotating disk boundary layer flow over a rough surface for stationary modes was investigated by using the weakly nonlinear theory where the Reynolds number R is close to its critical value Rc as determined by linear theory. Both the single mode case, where the wave vector K equals its critical Kc at the onset of stationary primary instability, and the bimodal case, where the wave vectors Kn (n = 1, 2) are close to Kc for the primary instability of the flow, are considered. The analysis leads to stable solutions for particular roughness forms and magnitude, and particular wave vectors ˜Kn (n = 1, 2) of the surface roughness.  相似文献   

10.
A uniformly valid asymptotic theory of resonantly interacting high-frequency waves for nonlinear hyperbolic systems in several space dimensions is developed. When applied to the equations of two-dimensional compressible fluid flow, this theory both predicts the geometric location of the new sound waves produced from the resonant interaction of sound waves and vorticity waves as well as yielding a simplified system which governs the evolution of the amplitudes. In this important special case, this system is two Burgers equations coupled by a linear integral operator with known kernel given by the vortex strength of the shear wave. Several inherently multidimensional assumptions for the phases are needed in this theory, and theoretical examples are given which delineate these assumptions. Furthermore, explicit necessary and sufficient conditions for the validity of the earlier noninteracting wave theory of Hunter and Keller are derived; these explicit conditions indicate that generally waves resonate and interact in several dimensions.  相似文献   

11.
Rossby Solitary Waves in the Presence of a Critical Layer   总被引:1,自引:1,他引:0  
This study considers the evolution of weakly nonlinear long Rossby waves in a horizontally sheared zonal current. We consider a stable flow so that the nonlinear time scale is long. These assumptions enable the flow to organize itself into a large‐scale coherent structure in the régime where a competition sets in between weak nonlinearity and weak dispersion. This balance is often described by a Korteweg‐de‐Vries equation. The traditional assumption of a weak amplitude breaks down when the wave speed equals the mean flow velocity at a certain latitude, due to the appearance of a singularity in the leading‐order equation, which strongly modifies the flow in a critical layer. Here, nonlinear effects are invoked to resolve this singularity, because the relevant geophysical flows have high Reynolds numbers. Viscosity is introduced in order to render the nonlinear‐critical‐layer solution unique, but the inviscid limit is eventually taken. By the method of matched asymptotic expansions, this inner flow is matched at the edges of the critical layer with the outer flow. We will show that the critical‐layer–induced flow leads to a strong rearrangement of the related streamlines and consequently of the potential‐vorticity contours, particularly in the neighborhood of the separatrices between the open and closed streamlines. The symmetry of the critical layer vis‐à‐vis the critical level is also broken. This theory is relevant for the phenomenon of Rossby wave breaking and eventual saturation into a nonlinear wave. Spatially localized solutions are described by a Korteweg‐de‐Vries equation, modified by new nonlinear terms; depending on the critical‐layer shape, this leads to depression or elevation waves. The additional terms are made necessary at a certain order of the asymptotic expansion while matching the inner flow on the dividing streamlines. The new evolution equation supports a family of solitary waves. In this paper we describe in detail the case of a depression wave, and postpone for further discussion the more complex case of an elevation wave.  相似文献   

12.
In this paper, suction and injection effects are investigated theoretically on the structure of the lower branch neutral stability modes of three-dimensional small disturbances imposed on the compressible boundary layer flow due to a rotating disk. In a recent study [ 1 ], it was demonstrated that the short-wavelength stationary/nonstationary compressible crossflow vortex modes at sufficiently high Reynolds numbers with reasonably small scaled frequencies can be described by an asymptotic expansion procedure as set up in [ 2 ] for the incompressible stationary modes, which rigorously takes into account the nonparallel effects. Employing this rational asymptotic technique, it is shown here that the wavenumber and the orientation of the compressible lower branch modes are governed by an eigenrelation that is under the strong influence of a suction/injection parameter     , which, when set to zero, the relation turns out to be the one obtained previously by Turkyilmazoglu [ 1 ] for zero-suction compressible modes.
The boundary layer growth contributes in the way of destabilizing all the modes, in particular for the compressible modes, though the wall cooling in the case of suction and the wall insulation and heating in the case of injection are found to persist to the destabilization for the modes in the vicinity of the stationary mode. From a linear stability analysis point of view, suction is found to be stabilizing, whereas injection enhances the instability as compared to the no suction through the surface of the disk. In both cases, positive frequency waves are found to be highly destabilized as compared to the waves having negative frequencies. The findings of the work are also fully supported after a comparison between the numerical results obtained from directly solving the linearized compressible system with a usual parallel flow approximation and the asymptotic compressible data obtained at a high Reynolds number.  相似文献   

13.
The bidirectional vortex refers to the bipolar, coaxial swirling motion that can be triggered, for example, in cyclone separators and some liquid rocket engines with tangential aft-end injectors. In this study, we present an exact solution to describe the corresponding bulk motion in spherical coordinates. To do so, we examine both linear and nonlinear solutions of the momentum and vorticity transport equations in spherical coordinates. The assumption will be that of steady, incompressible, inviscid, rotational, and axisymmetric flow. We further relate the vorticity to some power of the stream function. At the outset, three possible types of similarity solutions are shown to fulfill the momentum equation. While the first type is incapable of satisfying the conditions for the bidirectional vortex, it can be used to accommodate other physical settings such as Hill’s vortex. This case is illustrated in the context of inviscid flow over a sphere. The second leads to a closed-form analytical expression that satisfies the boundary conditions for the bidirectional vortex in a straight cylinder. The third type is more general and provides multiple solutions. The spherical bidirectional vortex is derived using separation of variables and the method of variation of parameters. The three-pronged analysis presented here increases our repertoire of general mean flow solutions that rarely appear in spherical geometry. It is hoped that these special forms will permit extending the current approach to other complex fluid motions that are easier to capture using spherical coordinates.  相似文献   

14.
An analytical treatment of inviscidly absolutely unstable modes is pursued using the long-wavelength asymptotic approach. It is shown using the inviscid Rayleigh scalings in conjunction with the linear critical layer theory that the rotating-disk boundary layer flow undergoes a region of absolute instability for some small azimuthal wave numbers. The analytically calculated branch points for the absolute instability are found to be in good agreement with those obtained via a numerical solution of the inviscid Rayleigh equation.  相似文献   

15.
The equilibrium statistics of the Euler equations in two dimensions are studied, and a new continuum model of coherent, or organized, states is proposed. This model is defined by a maximum entropy principle similar to that governing the Miller‐Robert model except that the family of global vorticity invariants is relaxed to a family of inequalities on all convex enstrophy integrals. This relaxation is justified by constructing the continuum model from a sequence of lattice models defined by Gibbs measures whose invariants are derived from the exact vorticity dynamics, not a spectral truncation or spatial discretization of it. The key idea is that the enstrophy integrals can be partially lost to vorticity fluctuations on a range of scales smaller than the lattice microscale, while energy is retained in the larger scales. A consequence of this relaxation is that many of the convex enstrophy constraints can be inactive in equilibrium, leading to a simplification of the mean‐field equation for the coherent state. Specific examples of these simplified theories are established for vortex patch dynamics. In particular, a universal relation between mean vorticity and stream function is obtained in the dilute limit of the vortex patch theory, which is different from the sinh relation predicted by the Montgomery‐Joyce theory of point vortices. © 1999 John Wiley & Sons, Inc.  相似文献   

16.
We consider the upper-branch neutral stability of flow in pipesof large aspect ratio, basically extending the work of F. T.Smith to the nonlinear regime. The inclusion of weak nonlinearityleads to an eigenproblem whose solution depends on the propertiesof three-dimensional nonlinear critical layers. Two specialcases are considered. The first is for very small amplitude perturbations, where R is a Reynolds numberbased on the height of the tube and which is assumed large.Then a fully analytical solution of the three-dimensional criticallayers is possible, from which the linear results of Smith maybe deduced. The second case studied is that of flow in a rectangularpipe, where a solution of the nonlinear critical layer problemcan be obtained. Further analysis of neutral modes in this lattercase suggests the possible existence, inter alia, of neutralmodes for finite aspect ratio tubes. These modes depend on thescaled amplitude and have O(1) wavespeeds.  相似文献   

17.
Waves in parallel shear flows are found to have different characteristics depending on whether nonlinear or viscous effects dominate near the critical layer. In this paper a nonlinear theory is developed which gives rise to a class of disturbances not found in the classical viscous theory. It is suggested that the modes found from such an analysis may be of importance in the breakdown of laminar flow due to free stream disturbances.  相似文献   

18.
The nonlinear stability of an oblique mode propagating in atwo-dimensional compressible boundary layer is considered underthe long wavelength approximation. The growth rate of the waveis assumed to be small so that the ideas of unsteady nonlinearcritical layers can be applied. It is shown that the spatial/temporalevolution of the mode is governed by a pair of coupled unsteadynonlinear equations for the disturbance vorticity and density.Expressions for the linear growth rate show clearly the effectsof wall heating and cooling, and in particular how heating destabilizesthe boundary layer for these long wavelength inviscid modesat O(1) Mach numbers. A generalized expression for the lineargrowth rate is obtained and is shown to compare very well fora range of frequencies and wave angles at moderate Mach numberswith full numerical solutions of the linear stability problem.The numerical solution of the nonlinear unsteady critical layerproblem using a novel method based on Fourier decompositionand Chebyshev collocation is discussed and some results arepresented.  相似文献   

19.
Finite amplitude neutrally stable two-dimensional disturbances in parallel flows are determined for large Reynolds numbers when both nonlinearity and viscosity are important in the critical layer. The phase shift across the critical layer depends on the local vertical Reynolds number in the critical layer, and it varies monotonically between the value zero of the nonlinear theory and — π of the viscous theory. An O(?½) distortion of both the mean and fundamental harmonic is shown to be necessary. The eigenvalue problem is solved for long waves yielding neutral modes which link the two previous theories. In particular certain difficulties of the nonlinear theory are resolved.  相似文献   

20.
An exact method is presented for obtaining uniformly translating distributions of vorticity in a two-dimensional ideal fluid, or equivalently, stationary distributions in the presence of a uniform background flow. These distributions are generalizations of the well-known vortex dipole and consist of a collection of point vortices and an equal number of bounded vortex sheets. Both the vorticity density of the vortex sheets and the velocity field of the fluid are expressed in terms of a simple rational function in which the point vortex positions and strengths appear as parameters. The vortex sheets lie on heteroclinic streamlines of the flow. Dipoles and multipoles that move parallel to a straight fluid boundary are also obtained. By setting the translation velocity to zero, equilibrium configurations of point vortices and vortex sheets are found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号