首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper gives a quantum algorithm for global optimization. The heart of such approaches employ Grover’s database search (1996; Phys Rev Lett 79(23):4709–4712, 1997a; 79(2):325–328, 1997b). Chi and Kim (1998) show that when the phases of the generalized Grover database search operator are optimally chosen, it is capable of finding a solution by a single query. To apply this method to global optimization requires knowledge of the number of marked points m to calculate the optimal phases, but this value is seldom known. This paper focuses on overcoming this hurdle by showing that an estimate of the optimal phases can be found and used to replace the optimal phases while maintaining a high probability of finding a solution. Merging this finding with a recently discovered dynamic quantum global optimization algorithm (BBW2D) that reduces the problem to finding successively improving regions using Grover’s search, we present a hybrid method that improves the efficiency and reduces the variance of the search algorithm when empirically compared to other existing quantum search algorithms.  相似文献   

2.
In this paper, we address a variant of the vehicle routing problem called the vehicle routing problem with time windows and multiple routes. It considers that a given vehicle can be assigned to more than one route per planning period. We propose a new exact algorithm for this problem. Our algorithm is iterative and it relies on a pseudo-polynomial network flow model whose nodes represent time instants, and whose arcs represent feasible vehicle routes. This algorithm was tested on a set of benchmark instances from the literature. The computational results show that our method is able to solve more instances than the only other exact method described so far in the literature, and it clearly outperforms this method in terms of computing time.  相似文献   

3.
The fast Fourier transform (FFT) is one of the most successful numerical algorithms of the 20th century and has found numerous applications in many branches of computational science and engineering. The FFT algorithm can be derived from a particular matrix decomposition of the discrete Fourier transform (DFT) matrix. In this paper, we show that the quantum Fourier transform (QFT) can be derived by further decomposing the diagonal factors of the FFT matrix decomposition into products of matrices with Kronecker product structure. We analyze the implication of this Kronecker product structure on the discrete Fourier transform of rank‐1 tensors on a classical computer. We also explain why such a structure can take advantage of an important quantum computer feature that enables the QFT algorithm to attain an exponential speedup on a quantum computer over the FFT algorithm on a classical computer. Further, the connection between the matrix decomposition of the DFT matrix and a quantum circuit is made. We also discuss a natural extension of a radix‐2 QFT decomposition to a radix‐d QFT decomposition. No prior knowledge of quantum computing is required to understand what is presented in this paper. Yet, we believe this paper may help readers to gain some rudimentary understanding of the nature of quantum computing from a matrix computation point of view.  相似文献   

4.
We present a purely algebraic approach to the Hamiltonian / Gauge theoretical invariants associated to torus actions on affine spaces. Secondly, we address the issue of computing the invariants: a localization and a genus recursion formula are deduced. Partially supported by: EAGER - European Algebraic Geometry Research Training Network, contract No. HPRN-CT-2000-00099 (BBW).  相似文献   

5.
In this paper, we propose new quantum arithmetic protocols among multiple parties. Let some parties have values. A problem is to find a protocol such that under the condition that any eavesdropper intercepting any quantum system being exchanged among the parties must not be able to acquire information, the parties compute an arithmetic operation such as addition and multiplication, and transfer its computing result to another party. One of main ideas to solve this problem is based on operating state phases. A quantum addition algorithm based on operating phases has been proposed by Draper, but his algorithm was not considered being eavesdropped. We propose secure quantum arithmetic protocols.  相似文献   

6.
一个等式约束问题的拟Newton—信赖域型方法及其收敛性   总被引:1,自引:0,他引:1  
在[1]中,Vardi提出一个信赖域方法,而收敛性证明却是在精确λ-搜索下给出的,本文在[1]的基础上提出一个新的算法-拟Newton-信赖域型算法,并证明该算法是全局收敛的,通过利用二阶修正技术去修正该算法,我们证明了该算法是局部超线性收敛的。  相似文献   

7.
Efficiently computing fast paths in large-scale dynamic road networks (where dynamic traffic information is known over a part of the network) is a practical problem faced by traffic information service providers who wish to offer a realistic fast path computation to GPS terminal enabled vehicles. The heuristic solution method we propose is based on a highway hierarchy-based shortest path algorithm for static large-scale networks; we maintain a static highway hierarchy and perform each query on the dynamically evaluated network, using a simple algorithm to propagate available dynamic traffic information over a larger part of the road network. We provide computational results that show the efficacy of our approach.  相似文献   

8.
Counting is one of the most basic procedures in mathematics and statistics. In statistics literature it is usually done via the proportion estimation method. In this article we manifest a radically different counting procedure first proposed in the late 1990’s based on the techniques of quantum computation. It combines two major tools in quantum computation, quantum Fourier transform and quantum amplitude amplification, and shares similar structure to the quantum part of the celebrated Shor’s factoring algorithm. We present complete details of this quantum counting algorithm and the analysis of its error distribution. Comparing it with the conventional proportion estimation method, we demonstrate that this quantum approach achieves much faster convergence rate than the classical approach.  相似文献   

9.
The simplicial algorithm is a kind of branch-and-bound method for computing a globally optimal solution of a convex maximization problem. Its convergence under the ω-subdivision strategy was an open question for some decades until Locatelli and Raber proved it (J Optim Theory Appl 107:69–79, 2000). In this paper, we modify their linear programming relaxation and give a different and simpler proof of the convergence. We also develop a new convergent subdivision strategy, and report numerical results of comparing it with existing strategies.  相似文献   

10.
Molecular similarity index measures the similarity between two molecules. Computing the optimal similarity index is a hard global optimization problem. Since the objective function value is very hard to compute and its gradient vector is usually not available, previous research has been based on non-gradient algorithms such as random search and the simplex method. In a recent paper, McMahon and King introduced a Gaussian approximation so that both the function value and the gradient vector can be computed analytically. They then proposed a steepest descent algorithm for computing the optimal similarity index of small molecules. In this paper, we consider a similar problem. Instead of computing atom-based derivatives, we directly compute the derivatives with respect to the six free variables describing the relative positions of the two molecules.. We show that both the function value and gradient vector can be computed analytically and apply the more advanced BFGS method in addition to the steepest descent algorithm. The algorithms are applied to compute the similarities among the 20 amino acids and biomolecules like proteins. Our computational results show that our algorithm can achieve more accuracy than previous methods and has a 6-fold speedup over the steepest descent method.  相似文献   

11.
Wang和Pan提出了一个计算整数扩展欧几里得矩阵序列的选择项的算法,并把此算法应用于模有理数重构问题和数值有理数重构问题.这个算法仅消耗接近线性的时间复杂度,与目前已知的整数gcd算法的最佳时间复杂度相一致,而整数gcd算法只是此算法的一个特殊情形.分析了这个算法,指出了算法中由于考虑的不够全面而存在的错误,补充了矩阵序列性质的理论部分,并修正这个算法.  相似文献   

12.
This paper deals with the problem of recovering an unknown low‐rank matrix from a sampling of its entries. For its solution, we consider a nonconvex approach based on the minimization of a nonconvex functional that is the sum of a convex fidelity term and a nonconvex, nonsmooth relaxation of the rank function. We show that by a suitable choice of this nonconvex penalty, it is possible, under mild assumptions, to use also in this matrix setting the iterative forward–backward splitting method. Specifically, we propose the use of certain parameter dependent nonconvex penalties that with a good choice of the parameter value allow us to solve in the backward step a convex minimization problem, and we exploit this result to prove the convergence of the iterative forward–backward splitting algorithm. Based on the theoretical results, we develop for the solution of the matrix completion problem the efficient iterative improved matrix completion forward–backward algorithm, which exhibits lower computing times and improved recovery performance when compared with the best state‐of‐the‐art algorithms for matrix completion. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper we revise and modify an old branch-and-bound method for solving the asymmetric distance–constrained vehicle routing problem suggested by Laporte et al. in 1987. Our modification is based on reformulating distance–constrained vehicle routing problem into a travelling salesman problem, and on using assignment problem as a lower bounding procedure. In addition, our algorithm uses the best-first strategy and new tolerance based branching rules. Since our method is fast but memory consuming, it could stop before optimality is proven. Therefore, we introduce the randomness, in case of ties, in choosing the node of the search tree. If an optimal solution is not found, we restart our procedure. As far as we know, the instances that we have solved exactly (up to 1000 customers) are much larger than the instances considered for other vehicle routing problem models from the recent literature. So, despite of its simplicity, this proposed algorithm is capable of solving the largest instances ever solved in the literature. Moreover, this approach is general and may be used for solving other types of vehicle routing problems.  相似文献   

14.
We propose a method to automatically decompose domains in the context of semiclassical Bohmian mechanics. The algorithm is based on the approximate quantum potential method and the technique of k-means clustering. Two numerical examples, static analysis of quantum forces for a Pearson Type IV distribution and temporal analysis of the scattering on the Eckart barrier, are presented to show the viability of the method. The first example demonstrates that approximate quantum forces using our domain decomposition technique achieves convergence as the number of domains increases. In the second example, it is demonstrated that the domains constructed from k-means clustering has well adapted themselves to the evolving wave packet, providing coverage to both transmission and reflection waves. We also confirm that the use of multiple domains improves the evolution of the wave packet by comparing the result with the quantum mechanical solution, previously obtained. The computational cost remains manageable even with a naive implementation of time-consuming summation routines, but development of more sophisticated methodology is recommended for large scale, multidimensional calculations.  相似文献   

15.
In this paper we introduce a new quantum computation model, the linear quantum cellular automaton. Well-formedness is an essential property for any quantum computing device since it enables us to define the probability of a configuration in an observation as the squared magnitude of its amplitude. We give an efficient algorithm which decides if a linear quantum cellular automaton is well-formed. The complexity of the algorithm is O(n2) in the algebraic model of computation if the input automaton has continuous neighborhood. © 1997 John Wiley & Sons, Inc. Random Struct. Alg., 11 , 381–394 (1997)  相似文献   

16.
We prove that guarding the vertices of a rectilinear polygon P, whether by guards lying at vertices of P, or by guards lying on the boundary of P, or by guards lying anywhere in P, is NP-hard. For the first two proofs (i.e., vertex guards and boundary guards), we construct a reduction from minimum piercing of 2-intervals. The third proof is somewhat simpler; it is obtained by adapting a known reduction from minimum line cover.

We also consider the problem of guarding the vertices of a 1.5D rectilinear terrain. We establish an interesting connection between this problem and the problem of computing a minimum clique cover in chordal graphs. This connection yields a 2-approximation algorithm for the guarding problem.  相似文献   


17.
Simulation optimization has received considerable attention from both simulation researchers and practitioners. In this study, we develop a solution framework which integrates multi-objective evolutionary algorithm (MOEA) with multi-objective computing budget allocation (MOCBA) method for the multi-objective simulation optimization problem. We apply it on a multi-objective aircraft spare parts allocation problem to find a set of non-dominated solutions. The problem has three features: huge search space, multi-objective, and high variability. To address these difficulties, the solution framework employs simulation to estimate the performance, MOEA to search for the more promising designs, and MOCBA algorithm to identify the non-dominated designs and efficiently allocate the simulation budget. Some computational experiments are carried out to test the effectiveness and performance of the proposed solution framework.  相似文献   

18.
We propose an exact lexicographic dynamic programming pricing algorithm for solving the Fractional Bin Packing Problem with column generation. The new algorithm is designed for generating maximal columns of minimum reduced cost which maximize, lexicographically, one of the measures of maximality we investigate. Extensive computational experiments reveal that a column generation algorithm based on this pricing technique can achieve a substantial reduction in the number of columns and the computing time, also when combined with a classical smoothing technique from the literature.  相似文献   

19.
We consider a scheduling problem in which the processing time of each job deteriorates, i.e. it increases as time passes after the release date of the job. We present a dynamic programming algorithm coupled with upper bounding and lower bounding techniques to compute exact solutions. We report on problem instances of different size and we analyze the dependence between the ranges to which the data belong and the computing time.  相似文献   

20.
Implementing Pure Adaptive Search with Grover's Quantum Algorithm   总被引:4,自引:0,他引:4  
Pure adaptive search (PAS) is an idealized stochastic algorithm for unconstrained global optimization. The number of PAS iterations required to solve a problem increases only linearly in the domain dimension. However, each iteration requires the generation of a random domain point uniformly distributed in the current improving region. If no regularity conditions are known to hold for the objective function, then this task requires a number of classical function evaluations varying inversely with the proportion of the domain constituted by the improving region, entirely counteracting the PAS apparent speedup. The Grover quantum computational search algorithm provides a way to generate the PAS iterates. We show that the resulting implementation, which we call the Grover adaptive search (GAS), realizes PAS for functions satisfying certain conditions, and we believe that, when quantum computers will be available, GAS will be a practical algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号