首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synchronization of workers and vehicles plays a major role in many industries such as logistics, healthcare or airport ground handling. In this paper, we focus on operational ground handling planning and model it as an archetype of vehicle routing problems with multiple synchronization constraints, coined as “abstract vehicle routing problem with worker and vehicle synchronization” (AVRPWVS). The AVRPWVS deals with routing workers to ground handling jobs such as unloading baggage or refuelling an aircraft, while meeting each job’s time window. Moreover, each job can be performed by a variable number of workers. As airports span vast distances and due to security regulations, workers use vehicles to travel between locations. Furthermore, each vehicle, moved by a driver, can carry several workers. We propose two mathematical multi-commodity flow formulations based on time-space networks to efficiently model five synchronization types including movement and load synchronization. Moreover, we develop a branch-and-price heuristic that employs both conventional variable branching and a novel variable fixing strategy. We demonstrate that the procedure achieves results close to the optimal solution in short time when compared to the two integer models.  相似文献   

2.
The vehicle routing problem with backhaul (VRPB) is an extension of the capacitated vehicle routing problem (CVRP). In VRPB, there are linehaul as well as backhaul customers. The number of vehicles is considered to be fixed and deliveries for linehaul customers must be made before any pickups from backhaul customers. The objective is to design routes for the vehicles so that the total distance traveled is minimized. We use multi-ant colony system (MACS) to solve VRPB which is a combinatorial optimization problem. Ant colony system (ACS) is an algorithmic approach inspired by foraging behavior of real ants. Artificial ants are used to construct a solution by using pheromone information from previously generated solutions. The proposed MACS algorithm uses a new construction rule as well as two multi-route local search schemes. An extensive numerical experiment is performed on benchmark problems available in the literature.  相似文献   

3.
We study a multiple-vehicle routing problem with a minimum makespan objective and compatibility constraints. We provide an approximation algorithm and a nearly-matching hardness of approximation result. We also provide computational results on benchmark instances with diverse sizes showing that the proposed algorithm (i) has a good empirical approximation factor, (ii) runs in a short amount of time and (iii) produces solutions comparable to the best feasible solutions found by a direct integer program formulation.  相似文献   

4.
This work considers the vehicle routing problem on a line with the constraint that each customer is visited after its release time. It is already known that the single-vehicle case is polynomially solvable. We present polynomial time algorithms for two variants of the multi-vehicle case.  相似文献   

5.
Time dependent vehicle routing problem with a multi ant colony system   总被引:4,自引:0,他引:4  
The Time Dependent Vehicle Routing Problem (TDVRP) consists in optimally routing a fleet of vehicles of fixed capacity when travel times are time dependent, in the sense that the time employed to traverse each given arc, depends on the time of the day the travel starts from its originating node. The optimization method consists in finding solutions that minimize two hierarchical objectives: the number of tours and the total travel time.  相似文献   

6.
Vehicle routing attributes are extra characteristics and decisions that complement the academic problem formulations and aim to properly account for real-life application needs. Hundreds of methods have been introduced in recent years for specific attributes, but the development of a single, general-purpose algorithm, which is both efficient and applicable to a wide family of variants remains a considerable challenge. Yet, such a development is critical for understanding the proper impact of attributes on resolution approaches, and to answer the needs of actual applications. This paper contributes towards addressing these challenges with a component-based design for heuristics, targeting multi-attribute vehicle routing problems, and an efficient general-purpose solver. The proposed Unified Hybrid Genetic Search metaheuristic relies on problem-independent unified local search, genetic operators, and advanced diversity management methods. Problem specifics are confined to a limited part of the method and are addressed by means of assignment, sequencing, and route-evaluation components, which are automatically selected and adapted and provide the fundamental operators to manage attribute specificities. Extensive computational experiments on 29 prominent vehicle routing variants, 42 benchmark instance sets and overall 1099 instances, demonstrate the remarkable performance of the method which matches or outperforms the current state-of-the-art problem-tailored algorithms. Thus, generality does not necessarily go against efficiency for these problem classes.  相似文献   

7.
This paper addresses multi-depot location arc routing problems with vehicle capacity constraints. Two mixed integer programming models are presented for single and multi-depot problems. Relaxing these formulations leads to other integer programming models whose solutions provide good lower bounds for the total cost. A powerful insertion heuristic has been developed for solving the underlying capacitated arc routing problem. This heuristic is used together with a novel location–allocation heuristic to solve the problem within a simulated annealing framework. Extensive computational results demonstrate that the proposed algorithm can find high quality solutions. We also show that the potential cost saving resulting from adding location decisions to the capacitated arc routing problem is significant.  相似文献   

8.
9.
We present a branch-and-cut algorithm for the identical customer Vehicle Routing Problem. Transforming the problem into an equivalent Path-Partitioning Problem allows us to exploit its polyhedral structure and to generate strong cuts corresponding to facet-inducing inequalities. By using cuts defined by multistars, partial multistars and generalized subtour elimination constraints, we are able to consistently solve 60-city problems to proven optimality and are currently attempting to solve problems involving a hundred cities. We also present details of the computer implementation and our computational results.  相似文献   

10.
This paper provides a review of the recent developments that had a major impact on the current state-of-the-art exact algorithms for the vehicle routing problem (VRP). The paper reviews mathematical formulations, relaxations and recent exact methods for two of the most important variants of the VRP: the capacitated VRP (CVRP) and the VRP with time windows (VRPTW). The paper also reports a comparison of the computational performances of the different exact algorithms for the CVRP and VRPTW.  相似文献   

11.
Despite the extensive research efforts and the promising results obtained by the ML community on Vehicle Routing Problems, most of the proposed techniques are still seldom employed by the OR community. With the current work, we highlight a number of challenges arising during the computational evaluation of heuristics for VRPs. The resulting guidelines aim at defining a common testing setup for the approaches designed by the two communities, thus promoting and strengthening the collaboration between them.  相似文献   

12.
In this paper, we extend the classical Pickup and Delivery Problem (PDP) to an integrated routing and three-dimensional loading problem, called PDP with three-dimensional loading constraints (3L-PDP). We are given a set of requests and a homogeneous fleet of vehicles. A set of routes of minimum total length has to be determined such that each request is transported from a loading site to the corresponding unloading site. In the 3L-PDP, each request is given as set of rectangular boxes and the vehicle capacity is replaced by a 3D loading space.This paper is the second one in a series of articles on 3L-PDP. As in the first paper we are dealing with constraints which guarantee that no reloading effort will occur. Here the focus is laid on the reloading ban, a packing constraint that ensures identical placements of same boxes in different packing plans. The reloading ban allows for better solutions in terms of travel distance than a routing constraint that was used in the first paper to preclude any reloading effort. To implement this packing constraint a new type of packing procedure is needed that is capable to generate a series of interrelated packing plans per route. This packing procedure, designed as tree search algorithm, and the corresponding concept of packing checks is the main contribution of the paper at hand. The packing procedure and a large neighborhood search procedure for routing form a hybrid algorithm for the 3L-PDP. Computational experiments were performed using 54 3L-PDP benchmark instances.  相似文献   

13.
In this paper we investigate a vehicle routing problem motivated by a real-world application in cooperation with the German Automobile Association (ADAC). The general task is to assign service requests to service units and to plan tours for the units such as to minimize the overall cost. The characteristics of this large-scale problem due to the data volume involve strict real-time requirements. We show that the problem of finding a feasible dispatch for service units starting at their current position and serving at most k requests is NP-complete for each fixed k ≥ 2. We also present a polynomial time (2k − 1)-approximation algorithm, where again k denotes the maximal number of requests served by a single service unit. For the boundary case when k equals the total number |E| of requests (and thus there are no limitations on the tour length), we provide a -approximation. Finally, we extend our approximation results to include linear and quadratic lateness costs.  相似文献   

14.
This paper presents a unified exact method for solving an extended model of the well-known Capacitated Vehicle Routing Problem (CVRP), called the Heterogenous Vehicle Routing Problem (HVRP), where a mixed fleet of vehicles having different capacities, routing and fixed costs is used to supply a set of customers. The HVRP model considered in this paper contains as special cases: the Single Depot CVRP, all variants of the HVRP presented in the literature, the Site-Dependent Vehicle Routing Problem (SDVRP) and the Multi-Depot Vehicle Routing Problem (MDVRP). This paper presents an exact algorithm for the HVRP based on the set partitioning formulation. The exact algorithm uses three types of bounding procedures based on the LP-relaxation and on the Lagrangean relaxation of the mathematical formulation. The bounding procedures allow to reduce the number of variables of the formulation so that the resulting problem can be solved by an integer linear programming solver. Extensive computational results over the main instances from the literature of the different variants of HVRPs, SDVRP and MDVRP show that the proposed lower bound is superior to the ones presented in the literature and that the exact algorithm can solve, for the first time ever, several test instances of all problem types considered.   相似文献   

15.
The classical vehicle routing problem involves designing a set of routes for a fleet of vehicles based at one central depot that is required to serve a number of geographically dispersed customers, while minimizing the total travel distance or the total distribution cost. Each route originates and terminates at the central depot and customers demands are known. In many practical distribution problems, besides a hard time window associated with each customer, defining a time interval in which the customer should be served, managers establish multiple objectives to be considered, like avoiding underutilization of labor and vehicle capacity, while meeting the preferences of customers regarding the time of the day in which they would like to be served (soft time windows). This work investigates the use of goal programming to model these problems. To solve the model, an enumeration-followed-by-optimization approach is proposed which first computes feasible routes and then selects the set of best ones. Computational results show that this approach is adequate for medium-sized delivery problems.  相似文献   

16.
The attributes of vehicle routing problems are additional characteristics or constraints that aim to better take into account the specificities of real applications. The variants thus formed are supported by a well-developed literature, including a large variety of heuristics. This article first reviews the main classes of attributes, providing a survey of heuristics and meta-heuristics for Multi-Attribute Vehicle Routing Problems (MAVRP). It then takes a closer look at the concepts of 64 remarkable meta-heuristics, selected objectively for their outstanding performance on 15 classic MAVRP with different attributes. This cross-analysis leads to the identification of “winning strategies” in designing effective heuristics for MAVRP. This is an important step in the development of general and efficient solution methods for dealing with the large range of vehicle routing variants.  相似文献   

17.
The two-dimensional loading heterogeneous fleet vehicle routing problem (2L-HFVRP) is a variant of the classical vehicle routing problem in which customers are served by a heterogeneous fleet of vehicles. These vehicles have different capacities, fixed and variable operating costs, length and width in dimension, and two-dimensional loading constraints. The objective of this problem is to minimize transportation cost of designed routes, according to which vehicles are used, to satisfy the customer demand. In this study, we proposed a simulated annealing with heuristic local search (SA_HLS) to solve the problem and the search was then extended with a collection of packing heuristics to solve the loading constraints in 2L-HFVRP. To speed up the search process, a data structure was used to record the information related to loading feasibility. The effectiveness of SA_HLS was tested on benchmark instances derived from the two-dimensional loading vehicle routing problem (2L-CVRP). In addition, the performance of SA_HLS was also compared with three other 2L-CVRP models and four HFVRP methods found in the literature.  相似文献   

18.
We present lower bounds for the vehicle routing problem (VRP) with and without split deliveries, improving the well known bound of Haimovich and Rinnooy Kan. These bounds are then utilized in a design of best-to-date approximation algorithms.  相似文献   

19.
Path relinking for the vehicle routing problem   总被引:3,自引:0,他引:3  
This paper describes a tabu search heuristic with path relinking for the vehicle routing problem. Tabu search is a local search method that explores the solution space more thoroughly than other local search based methods by overcoming local optima. Path relinking is a method to integrate intensification and diversification in the search. It explores paths that connect previously found elite solutions. Computational results show that tabu search with path relinking is superior to pure tabu search on the vehicle routing problem.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号