共查询到20条相似文献,搜索用时 78 毫秒
1.
将基于粒子群的模糊C均值聚类应用于模糊神经网络中规则库的生成及优化中。避免了传统模糊C均值聚类用于对输入变量空间进行划分并生成初始规则库的盲目性和随机性。 相似文献
2.
一种基于模糊C均值聚类的模糊规则提取方法 总被引:1,自引:2,他引:1
提出了一种基于模糊C均值聚类的模糊规则提取方法,给出了模糊系统的模糊规则库,基于此规则库,构造了一种新颖的分类算法,利用IRIS数据进行了测试,仿真结果表明,分类效果好,由此说明所提出的模糊规则生成方法有效。 相似文献
3.
补偿模糊神经网络是综合补偿模糊逻辑和神经网络的混合系统。提出了将密度聚类算法运用到补偿模糊神经网络的输入模糊化和规则提取中。通过该方法对非线性系统的建模,仿真结果证明改进后的网络在提取规则、误差精度、收敛速度等方面均优于传统补偿模糊神经网络。 相似文献
4.
为了从人工神经网络中抽取规则,提出一种新的规则抽取算法。网络被训练并剪枝后,将隐节点的激活值离散化,对输入到隐节点的权重进行聚类,聚类过程中可根据隐节点的激活值动态调整权值聚类数目,进而高效准确地抽取规则。实验结果表明,该算法可明显降低规则抽取的时间复杂度,减少生成规则的数量。 相似文献
5.
为了解决化工预报过程中的复杂问题,利用神经网络、模糊系统和演化算法等智能控制理论,提出了模糊聚类神经网络系统模型(FCNNS)。该模型的特点是利用模糊聚类算法提取典型数据,然后将典型数据送入神经网络系统进行学习产生模糊规则。该模型缩短了规则生成的时间,有效地防止了规则数爆炸,并在化工过程预报的应用中获得理想效果。 相似文献
6.
首先提出了具有模糊逻辑计算功能的模糊Hopfield神经网络-FHN.FHN中的神经元对应于模式集合的元素,权重矩阵对应于模式之间的模糊关系,最后讨论了FHN的稳定性和基于模糊距离关系的模糊聚类功能,研究表明FHN在模糊模式识别中具有广泛的应用性。 相似文献
7.
文章提出了一种新的聚类方法NFC,首先用模糊逻辑神经元网络的聚类算法和Cauchy训练的模拟退火算法相结合的局部算法得到初始聚类中心,然后用FCM算法进行模糊聚类;实验证明,NFC算法在一定程度上解决了FCM局部极值问题且有效性非常高。 相似文献
8.
基于蚁群聚类算法的模糊神经网络 总被引:1,自引:0,他引:1
提出了一种基于蚁群聚类的模糊神经网络算法,神经网络采用RBF网络结点结构,聚类采用二级结构蚁群聚类算法作为一级聚类而模糊C-均值聚类(FCM)用于二级聚类。将上述聚类方法用于模糊神经网络构建中,仿真结果表明具有并行实时性、聚类能力强的特点。 相似文献
9.
针对许多复杂系统的输入变量之间存在的相互关联,提出了一种基于聚类与模糊关联规则的神经模糊建模方法.这种方法采用基于聚类的模糊关联规则挖掘算法来进行输入变量的选择,之后,再采用基于减法聚类的神经模糊建模方法建模.最后,还将这种建模方法应用于实际建模问题,结果表明这种方法在保证模型精度符合建模要求的情况下,减少了模型输入个数,降低了建模的复杂程度. 相似文献
10.
常见的决策树分类算法、贝叶斯分类算法、神经网络分类算法为数据挖据分类算法研究提供了重要基础。但面对海量数据时,在时间效率、鲁棒性和精确性上都显示出了不足。为此,本文将模糊聚类的思想引入到神经网络分类算法中,首先通过模糊聚类子模型,将样本数据聚为几个数据子集,然后再采用不同的神经网络对各个数据子集同时进行训练学习。由于经过了模糊聚类子模型的预处理,每个神经网络训练学习样本的复杂性大大减少,使神经网络的学习效率大大提高。最后通过UCI下的实际数据库,对提出的分类算法进行了检验,结果显示了基于模糊聚类的神经网络在数据挖掘分类中应用的有效性。 相似文献
11.
基于Kohonen网络-粗集-模糊神经网络获取模糊规则的集成方法 总被引:1,自引:1,他引:0
基于单一知识发现方法的不足提出了一种基于Kohonen网络、Rough Sets和FNN获取模糊规则的集成方法.首先用Kohonen网络进行数据量化,然后运用粗集理论产生初始规则,并根据所得的规则建立模糊神经网络模型,从而生成较少的精炼规则.最后通过实例仿真分析,验证了该方法的有效性和实用性,同时为获取模糊规则提供了新的思路. 相似文献
12.
把模糊集理论和神经网络引入模式聚类的研究 ,在无须事先知道模式集数目的条件下 ,为提高聚类精度 ,提出模糊超球神经网络结构和聚类算法 ,同时给出仿真实验的结果 ,以说明模糊集理论和神经网络在模式聚类研究中的活力 . 相似文献
13.
通过对模糊神经网络和训练样本的构造,训练模糊神经网络使其达到一定的精度要求后,对网络进行裁剪.在网络隐层的激活和聚类后,提取规则的步骤,从而实现在数据库中获取有效知识的目的,并在应用中进行了仿真,验证了算法的有效性. 相似文献
14.
非线性系统建模的复合型模糊神经网络研究 总被引:1,自引:0,他引:1
针对非线性系统建模问题,提出了一类由函数逼近和规则推理网络构成的复合型模糊神经网络,其规则网络基于过程先验知识用于对操作区间的划分,而函数网络采用改进型模糊神经网络结构完成非线性函数逼近。采用一类非线性函数模型进行了仿真研究,结果表明,复合型模糊神经网络较之普通模糊神经网络在建模收敛速度和预测精度等方面都有较大的改善。 相似文献
15.
二型模糊神经网络结合了二型模糊系统描述实际情况不确定性和神经网络的学习能力,在非线性系统的辨识中得到了广泛应用。二型模糊神经网络参数学习使用最多的是反向传播算法算法,该算法原理简单,易于实现。但是该算法对初值敏感,不合适的初始会导致算法收敛于非最优解或者发散。针对反向传播算法的这一缺点,提出了一种基于模糊C均值聚类的区间二型模糊神经网络辨识算法。该算法选择高斯型隶属度函数,将模糊C均值算法得到的聚类中心初始化高斯函数的中心,而高斯函数的宽度利用模糊C均值聚类算法的隶属度和中心求取。通过2个非线性系统的辨识效果表明,提出的辨识算法具有较高的辨识精度,收敛速度较快。 相似文献
16.
用模糊神经网络建立GNP与产业结构的关系模型 总被引:6,自引:0,他引:6
给出了一种GNP值与产业结构的关系模型的算法,利用一个多输入单输出的模糊神经网络(MISO-FNN),提取关于人均GNP值与工业比例,农业比例及人口关系的模糊的规则。利用模糊神经网络进行学习,调整隶属函数的形状及结论部分的参数;同时,还提出了一种在学习过程中动脉筛选模型规则的方法,仿真结果验证了算法的有效性。 相似文献
17.
一种基于模糊神经网络控制系统的构建方法 总被引:1,自引:0,他引:1
给出了在构造基于模糊神经网络的控制系统的过程中利用遗传算法优化输人向量维数的一种改进方法,在此基础上进一步给出了一种通过数据分类提取模糊推理规则的方法,并且将两种方法结合起来形成一种基于模糊神经网络控制系统的构建方法. 相似文献
18.
基于模糊控制的人工神经网络模拟在土质边坡安全预测中的应用 总被引:2,自引:1,他引:1
从最优化角度出发,用神经网络解决模糊控制系统的规则提取问题,给出可靠的基于BP算法的可靠神经网络模拟过程,对模糊子集个数的选取与系统复杂性、精确性之间的关系进行讨论.为获得边坡复杂工况下的安全特征,建立基于模糊控制的人工神经网络边坡安全预测模型,由大量样本进行网络训练.研究结果表明:所建立的模型预测精度较高,且实用易行;边坡的坡度、内摩擦角、凝聚力对边坡的安全系数影响较大;该预测模型可用于处理普遍存在的不确定性、非线性复杂工程问题;通过模糊控制调整模型,可对不同工程对象进行较精确的模拟分析. 相似文献
19.
影响热轧带钢卷取温度的因素多而且复杂,采用传统的温度预测模型难以达到较高的精度。为了满足卷取温度高精度预测的要求,将模糊聚类分析、神经网络、粒子群算法结合起来,提出了一种基于模糊聚类的粒子群神经网络用于预测卷取温度。运用现场实际数据测试表明,该方法预测卷取温度效果良好。 相似文献
20.
桥梁承载能力状态评估的模糊神经网络推理方法 总被引:5,自引:0,他引:5
在综合现有的状态评估理论方法的基础上,提出了基于层次分析的承载能力状态评估模型.结合模糊理论和神经网络技术,建立了一套基于监测信息输入的模糊神经网络推理系统框架,并利用模糊规则生成的规则库作为神经网络训练和学习的样本.利用实例验证了采用此智能评估技术进行承载能力状态评估的可行性和实用性. 相似文献