首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rate constants and product branching ratios for POxCly- ions reacting with H and H2 were measured in a selected ion flow tube (SIFT) from 298 to 500 K. PO2Cl-, PO2Cl2-, POCl2-, and POCl3- were all unreactive with H2, having a rate constant with an upper limit of <5 x 10(-12) cm3 s(-1). PO2Cl2- did not react with H atoms either, having a similar rate constant limit of <5 x 10(-12) cm3 s(-1). The rate constants for PO2Cl-, POCl2-, and POCl3- reacting with H showed no temperature dependence over the limited range of 298-500 K and were approximately 10-20% of the collision rate constant. Cl abstraction by H to form HCl was the predominant product channel for PO2Cl-, POCl2-, and POCl3-, with a small amount of Cl- observed from POCl2- + H. Reactions of O2 and O3 with the POCl- products ions from the reaction of POCl2- + H were observed to yield predominantly PO3- and PO2-, respectively. POCl- reacted with O2 and O3 with rate constants of 8.9 +/- 1.1 x 10(-11) and 5.2 +/- 3.3 x 10(-10) cm3 s(-1), respectively. No associative electron detachment in the reactions with H atoms was observed with any of the reactant ions; however, detachment was observed with a PO- secondary product ion at high H atom concentrations. Results of new G3 theoretical calculations of optimized geometries and energies for the products observed are discussed.  相似文献   

2.
The absolute rate coefficients and product ion branching percentages at 298 K for the reactions of several POxCly- species with atomic nitrogen (N (4S(3/2))) and atomic oxygen (O (3P)) have been determined in a selected-ion flow tube (SIFT) instrument. POxCly- ions are generated by electron impact on POCl3 in a high-pressure source. O atoms are generated by quantitative titration of N atoms with NO, where N atoms are produced by microwave discharge on N2. The experimental procedure allows for the determination of rate coefficients for the reaction of the reactant ion with N (4S(3/2)) and O (3P) as well as with N2 and NO. None of the ions react with N2 or NO, giving an upper limit to the rate coefficient of <5 x 10(-12) cm3 molecules(-1) s(-1). POCl3- and POCl2- do not react with N atoms, giving an upper limit to the rate coefficient of <1 x 10(-11) cm3 molecules(-1) s(-1). The major product ion for POCl3- and POCl2- reacting with O involves loss of Cl from the reactant ion, accounting for >85% of the products. PO2- is a minor product (相似文献   

3.
Two experimental techniques, electron swarm and electron beam, have been applied to the problem of electron attachment to POCl3, with results indicating that there is a competition between dissociation of the resonant POCl3-* state and collisional stabilization of the parent anion. In the electron beam experiment at zero electron energy, the fragment ion POCl2- is the dominant ion product of attachment (96%), under single-collision conditions. Small amounts (approximately 2% each) of POCl3- and Cl- were observed. POCl3- and POCl2- ion products were observed only at zero electron energy, but higher-energy resonances were recorded for POCl-, Cl-, and Cl2- ion products. In the electron swarm experiment, which was carried out in 0.4-7 Torr of He buffer gas, the parent anion branching ratio increased significantly with pressure and decreased with temperature. The electron attachment rate constant at 297 K was measured to be (2.5+/-0.6)x10(-7) cm3 s(-1), with ion products POCl2- (71%) and POCl3- (29%) in 1 Torr of He gas. The rate constant decreased as the electron temperature was increased above 1500 K. Theory is developed for (a) the unimolecular dissociation of the nascent POCl3-* and (b) a stepladder collisional stabilization mechanism using the average energy transferred per collision as a parameter. These ideas were then used to model the experimental data. The modeling showed that D0 o(Cl-POCl2-) and EA(POCl3) must be the same within +/-0.03 eV.  相似文献   

4.
Electron attachment to PSCl3 was studied in 133-Pa pressure of helium gas at temperatures from 298-550 K. Measurements of rate constants and branching fractions were made in a flowing-afterglow Langmuir-probe (FALP) apparatus. These experiments yielded an electron attachment rate constant of 5.1 x 10(-8) cm3 s(-1) that was found not to change significantly in the 298-550 K temperature range. This rate constant represents an attachment efficiency of about 14%. Attachment in 133 Pa of He gas yielded only the dissociative ion products PSCl2- and Cl-. The FALP data suggest that there is an activation energy of about 17 meV for production of PSCl2-. Attachment to PSCl3 was also studied at high pressure (9-93 kPa) of N2 in an ion mobility mass spectrometer, at 298 K. In contrast to the low-pressure data, the parent anion product channel (PSCl3-) was observed (along with the dissociative channels), and increased in importance with N2 pressure. Gaussian-3 (G3) calculations were carried out for PSCl3 and PSCl2 neutrals and anions to aid in interpretation of the experimental results. The calculations indicate that the electron affinity EA(PSCl2) is slightly smaller than EA(Cl), which may account for the observed branching fractions for PSCl2- and Cl- in the low-pressure experiments. A natural population analysis was performed to obtain the charges associated with each atom in the molecules in order to estimate how the attached electron is distributed. Comparison is made between the present study of electron attachment to PSCl3 and our earlier work on attachment to POCl3, and G3 calculations are reported here for neutral and anionic POCl2 and POCl3. In contrast to PSCl2, the calculations imply that EA(POCl2) is slightly greater than EA(Cl). For both PSCl3 and POCl3, the calculations show that the dissociative electron attachment process is close to thermoneutral.  相似文献   

5.
A direct dynamics method is employed to study the kinetics of the multiple channel reaction CH(3)OCl + Cl. The potential energy surface (PES) information is explored from ab initio calculations. Two reaction channels, Cl- and H-abstractions, have been identified. The optimized geometries and frequencies of the stationary points and the minimum-energy paths (MEPs) are calculated at the MP2 level of theory using the 6-311G(d, p) and cc-pVTZ basis sets, respectively. The single-point energies along the MEPs are further refined at the G3(MP2)//MP2/6-311G(d, p), G3//MP2/6-311G(d, p), as well as by the multicoefficient correlation method based on QCISD (MC-QCISD) using the MP2/cc-pVTZ geometries. The enthalpies of formation for the species CH(3)OCl and CH(2)OCl are calculated via isodesmic reactions. The rate constants of the two reaction channels are evaluated by using the variational transition-state theory over a wide range of temperature, 220-2200 K. The calculated rate constants exhibit the slightly negative temperature dependence and show good agreement with the available experimental data at room temperature at the G3(MP2)//MP2/6-311G(d, p) level. The present calculations indicate that the two channels are competitive at low temperatures while H-abstraction plays a more important role with the increase of temperature. The calculated k(1a)/k(1) ratio of 0.5 at 298 K is in general agreement with the experimental one, 0.8 +/- 0.2. The high rate constant for CH(3)OCl + Cl shows that removal by reaction with Cl atom is a potentially important loss process for CH(3)OCl in the polar stratosphere.  相似文献   

6.
The reaction of quinazolones with POCl(3) to form the corresponding chloroquinazolines occurs in two distinct stages, which can be separated through appropriate temperature control. An initial phosphorylation reaction occurs readily under basic conditions (R(3)N, aq pK(a) > 9) at t < 25 °C to give a variety of phosphorylated intermediates. Pseudodimer formation, arising from reaction between phosphorylated intermediates and unreacted quinazolone, is completely suppressed at these temperatures, provided the system remains basic throughout the POCl(3)addition. Clean turnover of phosphorylated quinazolones to the corresponding chloroquinazoline is then achieved by heating to 70-90 °C. (N)- and (O)-phosphorylated intermediates, involving multiple substitution at phosphorus, have been identified and their reactions monitored using a combination of (1)H, (31)P, and (19)F NMR. Kinetic analysis of the reaction profiles suggest that the various intermediates react with both Cl(-) and Cl(2)P(O)O(-), but product formation arises exclusively from reaction of (O)-phosphorylated intermediates with Cl(-). (O)- and (N)-phosphorylated intermediates equilibrate rapidly on the time scale of the reaction. A minimum of 1 molar equiv of POCl(3) is required for efficient conversion of the intermediates to product.  相似文献   

7.
3-n-propylpyridiniumsilsesquioxane chloride polymer, abbreviated as SiPy+Cl-, was used to coat a porous silica gel, SiO2, surface to form the chemically modified solid SiO2/SiPy+Cl-. The resulting polymer film was well adhered to the surface and presented an ion exchange capacity of 0.74 mmol g(-1). Metal halides, MClz [M=Fe(III), Cu(II), and Zn(II)], were adsorbed by the modified solid from ethanol solutions as neutral species by forming the surface anionic complexes described by the equation: mSiO2/SiPy+Cl-+ MClz <=> (SiO2/SiPy+)m[MCl(z+m)]m-, where the [MCl(z+m)]m- species adsorbed on the surface are FeCl4-, ZnCl4(2-), and CuCl4(2-). Accurate estimates of the specific sorption capacities and the heterogeneous stability constants of the immobilized metal complexes were determined with the aid of computational procedures.  相似文献   

8.
借处理2-羟基-5-(2-苯基-4-喹啉基)-1,3,二唑同PCl_5/POCl_3之间的反应合成了2-氯-5-(2-苯基-4-喹啉基)-1,3,4-二唑(3)和通过2-基-5-(2-苯基-4-喹啉基)-1,3,4-二唑的甲基化,然后氧化制得2-甲磺酰基-5-(2-苯基-4-喹啉基)-1,3,4-二唑(6).并分别研究了3和6同胺、叠氮及肼的反应,得到2,5-二取代的二唑新衍生物.初步观察了部分化合物的抗菌活性.  相似文献   

9.
The Crystal Structures of α- and β-K3OCl The orange coloured compound K3OCl has been prepared. It exists in a low temperature modification (α-K3OCl) and a high temperature modification (β-K3OCl). The transition temperature is 364 ± 5 K. The crystal structures were determined by x-ray diffraction. α-K3OCl crystallizes at room temperature in the orthorhombic space group Pbnm (Z = 4) with the cell parameters a = b = 723.9(2) pm and c = 1 027.7(2) pm in the anti-GdFeO3-structure type. The high temperature modification β-K3OCl crystallizes (Z = 1) in the cubic space group Pm3m in the β-Ag3SI-structure type with a = 516.2(2) pm (T = 393 K).  相似文献   

10.
The scattering dynamics leading to the formation of Cl (2P(3/2)) and Cl* (2P(1/2)) products of the CH(3)+HCl reaction (at a mean collision energy =22.3 kcal mol(-1)) and the Cl (2P(3/2)) products of the CD(3)+HCl reaction (at =19.4 kcal mol(-1)) have been investigated by using photodissociation of CH(3)I and CD(3)I as sources of translationally hot methyl radicals and velocity map imaging of the Cl atom products. Image analysis with a Legendre moment fitting procedure demonstrates that, in all three reactions, the Cl/Cl* products are mostly forward scattered with respect to the HCl in the center-of-mass (c.m.) frame but with a backward scattered component. The distributions of the fraction of the available energy released as translation peak at f(t)=0.31-0.33 for all the reactions, with average values that lie in the range =0.42-0.47. The detailed analysis indicates the importance of collision energy in facilitating the nonadiabatic transitions that lead to Cl* production. The similarities between the c.m.-frame scattering and kinetic energy release distributions for Cl and Cl* channels suggest that the nonadiabatic transitions to a low-lying excited potential energy surface (PES) correlating to Cl* products occur after passage through the transition state region on the ground-state PES. Branching fractions for Cl* are determined to be 0.14+/-0.02 for the CH(3)+HCl reaction and 0.20+/-0.03 for the CD(3)+HCl reaction. The difference cannot be accounted for by changes in collision energy, mass effects, or vibrational excitation of the photolytically generated methyl radical reagents and instead suggests that the low-frequency bending modes of the CD(3)H or CH(4) coproduct are important mediators of the nonadiabatic couplings occurring in this reaction system.  相似文献   

11.
用分光光度法研究了二甲亚砜溶液中, 氯化铜与meso-四(间甲基)苯基卟啉镉(Ⅱ)(Cd(Ⅱ)P)亲电取代反应的动力学. 讨论了影响反应的因素, CuCl_2+Cd(Ⅱ)P→Cu(Ⅱ)P+CdCl_2提出了反应机理并进行了验证. 用AST286微机对实验数据进行非线性最小二乘法拟合, 得到拟合曲线及似平衡步的平衡常数K及其它基元步骤的速率常数k_1, k_(-1), k_2. 研究了温度对反应的影响, 求得似平衡步的△_rH_m~-θ-, △_rS_m~-θ-及其它基元步骤的活化参数△~≠H_m, △~≠S_m.  相似文献   

12.
The dynamics of the O(3P) + HCl reaction at hyperthermal collision energies were investigated using the quasiclassical trajectory method. Stationary points on the OClH 3A" and 3A' potential energy surfaces (PESs) were also examined. The lowest transition state leading to OCl + H on the 3A" surface is 2.26 eV above the reagents at the CCSD(T)/cc-pVTZ level of theory. This saddle point is bent and product-like. Direct dynamics calculations at the MP2/cc-pVTZ level of theory were used to investigate the excitation functions for OH + Cl, OCl + H, and O + H + Cl formation. OCl is formed mainly from small-impact-parameter collisions, and the OCl + H excitation function peaks around 5 eV, where it is similar in magnitude to the OH + Cl excitation function. The shape of the OCl + H excitation function is discussed, and features are identified that should be general to hyperthermal collision dynamics.  相似文献   

13.
The pnictocenium salts [Cp*PCl]+[μCl]? ( 1 a ), [Cp*PCl]+[ClAl(ORF)3]? ( 1 b ), [Cp*AsCl]+[ClAl(ORF)3]? ( 2 ), and [(Cp*)2P]+[μCl]? ( 3 ), in which Cp*=Me5C5, μCl=(FRO)3Al? Cl? Al(ORF)3, and ORF=OC(CF3)3, were prepared by halide abstraction from the respective halopnictines with the Lewis superacid PhF→Al(ORF)3. 1 The X‐ray crystal structures of 1 a , 2 , and 3 established that in the half as well as in the sandwich cations the Cp* rings are attached in an η2‐fashion. By using one or two equivalents of the Lewis acid, the two new weakly coordinating anions [μCl]? and [ClAl(ORF)3]? resulted. They also stabilize the highly reactive cations in PhF or 1,2‐F2C6H4 solution at room temperature. The chloride ion affinities (CIAs) of a range of classical strong Lewis acids were also investigated. The calculations are based on a set of isodesmic BP86/SV(P) reactions and a non‐isodesmic reference reaction assessed at the G3MP2 level.  相似文献   

14.
15.
The sterically imposed electronic interaction in Nap (POCl2)(PCl4) (Nap = naphthalene-1,8-diyl) results in hyperco-ordination of the P atom by the O donor in the bridging position between the two peri-substituents.  相似文献   

16.
Synthesis and Properties of Pentamethylcyclopentadienylsubstituted PPC and AsPC three-membered Rings Via the reaction of bis-(pentamethylcyclopentadienyl)diphosphene [Cp*P?PCp*, 1 ] and 1-(pentamethylcyclopentadienyl)-2-(2,4,6-tritbutylphenyl)- diphosphene [Cp*P?PMes*, 2 ] with the diazomethanes N2CHR [R = H, Si(CH3)3] the four new diphosphiranes Cp*PPCp*CHSi(CH3)3, 4a , Cp*PPMes*CHSi(CH3)3, 4b , Cp*PPCp*CH2, 5a , Cp*PPMes*CH2, 5b , are obtained. The formation of 4a results via a 2 + 3-cyclo-addition product, which could be proved by nmr spectroscopy. The reaction of As-(pentamenthylcyclopentadienyl)-P-(2,4,6-tritbutylphenyl) arsaphosphene [Cp*As?PMes*, 3 ] with diazomethane leads to 1-(pentamethylcyclopentadienyl)-2-(2,4,6-tritbutylphenyl)-1-arsa-2 -phosphacyclopropane [phospharsiran, Cp*AsPMes*CH2, 6 ]. Analysis of the structures by nmr spectroscopy gives clear evidence for a trans-orientation of the substituents at the El? P bond (El = As, P) in all of the three membered ring systems. For the diphosphirane Cp*PPCp*CH2 ( 5a ) a Cp*-phosphorus bond cleavage by thermolysis cannot be observed. From the reaction of compound 5a with Cr(CO)5thf one obtains 1-(pentacarbonylchrom)-1,2-bis(pentamethylcyclopentadienyl)-1,2- diphosphacyclo-propane, 7 .  相似文献   

17.
该文以三氯化磷(PCl3)、三氯氧磷(POCl3)和环三聚磷酸(P3M)为辅助试剂,进行了苯丙氨酸(Phe)自组装成肽反应的研究,利用液相色谱-质谱联用以及电喷雾多级质谱技术对反应体系组分进行了分析和结构鉴定。考察了不同缩合试剂和反应时间对苯丙氨酸成肽反应的影响,并初步探讨了无机磷试剂辅助下芳香侧链氨基酸的成肽机理。反应中有Phe系列寡肽生成,同时也有少量环肽存在。该研究可为寡肽的合成工艺开发提供参考,同时对于研究生命起源中的前生命化学物质有着重要的理论意义和学术价值。  相似文献   

18.
A family of spin-crossover (SC) complexes, [Fe(II)H(3)L(Me)]Cl.X (X(-) = PF(6) (-), AsF(6) (-), SbF(6) (-), CF(3)SO(3) (-)), 1-4, has been synthesized, in which H(3)L(Me) denotes the hexadentate N(6) tripod-like ligand tris[2-{[(2-methylimidazol-4-yl)methylidene]amino}ethyl]amine, containing three imidazole groups, with a view to establishing the effect of the counter anion on the SC behavior. These complexes have been found to crystallize in the same monoclinic crystal system with similar cell dimensions. The general crystal structure consists of a two-dimensional (2D) extended network constructed by NH...Cl- hydrogen bonds between Cl- and the imidazole NH groups of three neighboring [Fe(II)H(3)L(Me)]2+ ions, while the anion X exists as an isolated counter anion and occupies the space between the 2D sheets. Magnetic susceptibilities and M?ssbauer spectra have revealed a variety of SC behaviors depending on the counter anion, including a one-step HS<==>(HS + LS)/2 (1, X = PF(6) (-)), a two-step HS<==>(HS + LS)/2<==>LS with a slow thermal relaxation (2, X = AsF(6) (-)), a gradual one-step HS<==>LS (3, X = SbF(6) (-)), and a steep one-step HS<==>LS with hysteresis (4, X = CF(3)SO(3) (-)). The complexes assume the space group P2(1)/n in the HS state, P2(1) in the HS + LS state, and P2(1)/n in the LS state. The Fe-N bond lengths and the N-Fe-N bond angles are indicative of the HS, HS + LS, and LS states. The molecular volumes, V, of the counter anions have been evaluated by quantum-chemical calculations as follows: 53.4 A(3) (BF(4) (-)), 54.4 A(3) (ClO(4) (-)), 73.0 A(3) (PF(6) (-)), 78.5 A(3) (AsF(6) (-)), 88.7 A(3) (SbF(6) (-)), and 86.9 A(3) (CF(3)SO(3) (-)). The size and shape of the counter anion affects the flexible 2D network structure constructed by the hydrogen bonds, leading to modifications of the SC behavior. These estimated relative sizes of the counter anions correlate well with the observed SC behaviors.  相似文献   

19.
The reaction of formaldehyde radical anion with methyl chloride, CH2O*- + CH3Cl, is an example in which a single transition state leads to two products: substitution at carbon (Sub(C), CH3CH2O* + Cl-) and electron transfer (ET, CH2O + CH3* + Cl-). The branching ratio for this reaction has been studied by ab initio molecular dynamics (AIMD). The energies of transition states and intermediates were computed at a variety of levels of theory and compared to accurate energetics calculated by the G3 and CBS-QB3 methods. A bond additivity correction has been constructed to improve the Hartree-Fock potential energy surface (BAC-UHF). A satisfactory balance between good energetics and affordable AIMD calculations can be achieved with BH&HLYP/6-31G(d) and BAC-UHF/6-31G(d) calculations. Approximately 200 ab initio classical trajectories were calculated for each level of theory with initial conditions sampled from a thermal distribution at 298 K at the transition state. Three types of trajectories were distinguished: trajectories that go directly to ET product, trajectories that go to Sub(C) product, and trajectories that initially go into the Sub(C) valley and then dissociate to ET products. The BH&HLYP/6-31G(d) calculations overestimate the number of nonreactive and direct ET trajectories because the transition state is too early. For the BH&HLYP and BAC-UHF methods, about one-third of the trajectories that initially go into the Sub(C) valley dissociate to ET products, compared to just over half with UHF/6-31G(d) in the earlier study. This difference can be attributed to a better value for the calculated energy release from the initial transition state and to an improved Sub(C) --> ET barrier height with the BH&HLYP and BAC-UHF methods.  相似文献   

20.
The reaction of TaCl5 with a single equivalent of Cl3P=NSiMe3 resulted in the isolation of the perhalogenated (phosphoraniminato) tantalum(V) complex TaCl4(N=PCl3) (1). Reaction of 1 with an excess of THF and subsequent cooling produced crystals of TaCl4(N=PCl3)(THF) (1.THF), which possesses a distorted octahedral Ta center with a THF molecule coordinated trans to the phosphoraniminato ligand. The reaction of 1 with the aminophosphoranimine, (Me3Si)2NPCl2=NSiMe3, resulted in a [3 + 1] cyclocondensation reaction to form the metallacyclic complex, TaCl3(N=PCl3)[N(SiMe3)PCl2N(SiMe3)] (2), which contains a TaNPN four-membered ring and a phosphoraniminato ligand (N=PCl3). The analogous [3 + 1] cyclocondensation reaction between (Me3Si)2NPCl2=NSiMe3 and TaCl5 led to the isolation of TaCl4[N(SiMe3)PCl2N(SiMe3)] (3). An attempt to cleave the NPN ligand from the Ta center in 2 via protonolysis with HCl led to an unusual phosphoraniminato ligand coupling reaction to yield the novel phosphazenium salt [N(PCl2NH2)2][TaCl6] (4). All new compounds (1.THF and complexes 1-4) were characterized by single-crystal X-ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号