首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
三氯化钛水解法制备纳米金红石相氧化钛粉体   总被引:6,自引:0,他引:6  
孙静  高濂 《化学学报》2002,60(8):1524-1526
以TiCl_3为原料,通过控制盐浓度和水解温度可以在温和条件下制备出晶粒尺 寸为6~8 nm的金红石相氧化钛粉体,比表面为74.55 m~2/g,TEM照片显示粉体, 比表面为74.55 m~2/g, TEM照片显示粉体为钛状。苯酚的光催化降实验表明这种粉 体具有与P-25相关的光催化活性。采用(CH_3)_4NOH为注定剂,粉体经800 ℃煅烧 ,晶相由锐钛相全部转变为金红石相。  相似文献   

2.
The effect of the rutile content on the photovoltaic performance of dye-sensitized solar cells (DSSCs) composed of mixed-phase TiO(2) photoelectrode has been investigated. The mixed-phase TiO(2) particles with varied amounts of rutile, relative to anatase phase, are synthesized by an in situ method where the concentration of sulfate ion is used as a phase-controlling parameter in the formation of TiO(2) using TiCl(4) hydrolysis. The surface area (S(BET)) varies from 33 (pure rutile) to 165 (pure anatase) m(2) g(-1). Generally, both the current density (J(sc)) and photo-conversion efficiency (η) decrease as the rutile content increases. The incorporation of rod-shaped rutile particles causes low uptake of dye due to the reduced surface area, as well as slow electron transport in less efficiently-stacked structure. However, maximum J(sc) (14.63 mA cm(-2)) and η (8.69%) appear when relatively low rutile content (16%) is employed. The reported synergistic effect by the efficient interparticle electron transport from rutile to anatase seems to overbalance the decrease of surface area when small amount of rutile particles is incorporated.  相似文献   

3.
以TiCl4为原料, 采用溶胶水解法合成了金红石型纳米TiO2颗粒, 并以其为载体制备了WC/TiO2纳米复合材料. 采用X射线衍射(XRD)、扫描电子显微镜(SEM)和X射线能谱(EDS)等手段分析了WC/TiO2纳米复合材料的晶相组成和表面形貌. 结果显示样品是由WC, TiO2和W组成, 纳米WC颗粒均匀地包覆在TiO2的表面, 并与TiO2构成了WC/TiO2纳米复合材料. 采用循环伏安法和计时电流法研究了WC/TiO2纳米复合材料对硝基苯的电催化性能. 结果表明, WC/TiO2纳米复合材料对硝基苯的电催化活性和电化学稳定性均优于介孔结构碳化钨(meso-WC)和纳米WC颗粒(part-WC).  相似文献   

4.
Titanate nanofibers of various sizes and layered structure were prepared from inorganic titanium compounds by hydrothermal reactions. These fibers are different from "refractory" mineral substances because of their dimension, morphology, and significant large ratio of surface to volume, and, surprisingly, they are highly reactive. We found, for the first time, that phase transitions from the titanate nanostructures to TiO(2) polymorphs take place readily in simple wet-chemical processes at temperatures close to ambient temperature. In acidic aqueous dispersions, the fibers transform to anatase and rutile nanoparticles, respectively, but via different mechanisms. The titanate fibers prepared at lower hydrothermal temperatures transform to TiO(2) polymorphs at correspondingly lower temperatures because they are thinner, possess a larger surface area and more defects, and possess a less rigid crystal structure, resulting in lower stability. The transformations are reversible: in this case, the obtained TiO(2) nanocrystals reacted with concentrate NaOH solution, yielding hollow titanate nanotubes. Consequently, there are reversible transformation pathways for transitions between the titanates and the titanium dioxide polymorphs, via wet-chemical reactions at moderate temperatures. The significance of these findings arises because such transitions can be engineered to produce numerous delicate nanostructures under moderate conditions. To demonstrate the commercial application potential of these processes, we also report titanate and TiO(2) nanostructures synthesized directly from rutile minerals and industrial-grade rutiles by a new scheme of hydrometallurgical reactions.  相似文献   

5.
Layered protonated titanates (LPTs), a class of interesting inorganic layered materials, have been widely studied because of their many unique properties and their use as precursors to many important TiO(2)-based functional materials. In this work, we have developed a facile solvothermal method to synthesize hierarchical spheres (HSs) assembled from ultrathin LPT nanosheets. These LPT hierarchical spheres possess a porous structure with a large specific surface area and high stability. Importantly, the size and morphology of the LPT hierarchical spheres are easily tunable by varying the synthesis conditions. These LPT HSs can be easily converted to anatase TiO(2) HSs without significant structural alteration. Depending on the calcination atmosphere of air or N(2), pure anatase TiO(2) HSs or carbon-supported TiO(2) HSs, respectively, can be obtained. Remarkably, both types of TiO(2) HSs manifest excellent cyclability and rate capability when evaluated as anode materials for high-power lithium-ion batteries.  相似文献   

6.
TiO2纳米晶光催化降解铬酸根离子的研究   总被引:19,自引:0,他引:19  
以二氧化钛为光催化剂,研究了溶液的pH值、铬酸根离子的初始浓度、通入的气体种类、氧化钛的载量等因素对铬酸根离子降解率的影响。同时合成了粒径小于10nm的锐钛矿相和金红石相氧化钛纳米晶来考察晶相和尺寸效应对降解率的影响。结果表明,锐钛矿的催化活性高于金红石相,两者的催化活性均大大高于市售的氧化钛微粉。  相似文献   

7.
Room-temperature UV-excited photoluminescence spectra are reported for nanocrystalline films of anatase, rutile, and mixed-phase TiO2 (Degussa P25) before and after treatment with TiCl4 solution. The surface defect luminescence of anatase in the visible region is suppressed by TiCl4 treatment, indicating a decrease in surface traps. A similar anatase surface-defect emission is observed in the mixed-phase nanoparticles but is completely quenched following TiCl4 treatment and replaced by emission characteristic of rutile. Our results suggest that TiCl4 treatment of mixed-phase TiO2 may result in a surface layer of rutile and that radiative recombination of electron-hole pairs formed in the bulk anatase region of nanocrystallites occurs after electrons migrate to newly formed rutile surfaces.  相似文献   

8.
Titanium dioxide (TiO2) nanoparticles of rutile phase were synthesized by hydrolysis of TiCl4 at 95 ℃ in aqueous solution. The samples as prepared and calcined at 500 ℃ were characterized by XRD, TG-DTA and TEM. The sample as prepared was of imperfect rutile structure, and its morphology was rod-like with a diameter of 10~20 nm, a length of 20~80 nm and an aspect ratio of 2~4. The structure of the sample calcined at 500 ℃ was a perfect rutile one, and its morphology was rod-like with a diameter of 15~25 nm, a length of 25~105 nm and an aspect ratio of 2~4. These results indicate that calcination temperature has a positive effect on the structure and the size of rutile nanocrystals, and has no effect on the aspect ratio of rutile nanocrystal. A model for the formation mechnism of rutile nanocrystal in aqueous solution under hydrolysis conditions has been proposed.  相似文献   

9.
In this paper, Nb-doped TiO(2) with anatase and rutile phases was synthesized by the acid-catalyzed sol-gel method, and used as catalyst supports for the oxygen reduction reaction (ORR). X-ray diffraction (XRD), transmission electron microscopy (TEM), Energy dispersive X-ray spectroscopy (EDX), and Brunauer-Emmett-Teller (BET) were used to characterize the support materials in terms of material structures, morphology, composition, and surface area. XRD analysis showed that both the high concentration of hydrochloric acid present in the synthesis and the presence of Pt in the support could favor the formation of conductive rutile phased TiO(2), resulting in the improvement of electronic conduction of the Nb-doped TiO(2) support, which was confirmed by measured conductivities. For electrochemical characterization and ORR catalyst activity validation, Pt particles were deposited on the supports synthesized in this paper to form several catalysts, which were tested for electrochemical Pt surface area, ORR mass activity and specific activity. A monotonic increase in Pt ORR mass activity with increasing catalyst support's conductivity suggested that the support conductivity plays an important role in enhancing catalyst mass activity. The results showed that these non-carbon supported catalysts are promising as PEM fuel cell cathode catalysts.  相似文献   

10.
Mesoporous rutile TiO(2) nanoneedles have been successfully synthesized using a reverse microemulsion-mediated sol-gel method at room temperature. The materials were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and the Bruauner-Emmet-Teller (BET) adsorption method, and their electrochemical properties were investigated by galvanostatic charge and discharge tests. XRD observations revealed the formation of a pure rutile TiO(2) phase. Furthermore, TEM observation revealed the presence of a highly porous needle-like morphology. The electrochemical measurements show that the nanoneedles deliver an initial capacity of 305 mA h g(-1) as anode material for Li-ion batteries and sustain a capacity value of 128 mA h g(-1) beyond 15 cycles. The reported synthesis is simple, mild, energy efficient, and without postcalcination.  相似文献   

11.
A facile new method that combines electrospray and hydrothermal treatment is used to prepare mesoporous core-shell TiO(2) spheres with high specific surface areas and high pore volumes. Interestingly, the resulting TiO(2) spheres are composed of anatase TiO(2) nanocrystals with exposed step-like {001} and smooth {010} facets. The percentage of exposed {001} facets can be adjusted by changing the experimental parameters used in the electrospray and hydrothermal treatment processes, such as the contents of poly(N-vinyl-2-pyrrolidone) and acetic acid. The combination of high specific surface area (>100 m(2) g(-1)), high pore volume (>0.30 cm(3) g(-1)), useful pore size (10-15 nm), spherical core-shell structure, and exposed high energy facets makes these TiO(2) spheres an important candidate for use in many photoelectrochemical applications. The formation mechanism of the mesoporous TiO(2) spheres is also studied. The great advantage of this method is that interesting and complicated mesoporous superstructures can be prepared using electrospray technology.  相似文献   

12.
石立杰  杨儒  李敏 《无机化学学报》2006,22(7):1196-1202
分别以TiCl4,Ti(NO3)4和Ti(SO4)2为前驱体,在低温和强酸性条件下,通过水解反应可控地合成了具有不同晶相组成,且比表面积较高的纳米TiO2,并用XRD,TEM和N2-吸附脱附技术对其晶相、粒径大小、形貌及比表面积进行了表征。结果表明,钛离子在有Cl-、NO3-存在的酸性溶液中水解,水解温度≤80 ℃,可以生成结晶良好的具有细小晶粒尺寸和较高比表面积的金红石型纳米TiO2粉体,水解温度>80 ℃,反而有锐钛矿型TiO2生成,而在有SO42-存在的酸性溶液中,TiO2样品的晶相组成不随水解温度的变化而改变,均为锐钛矿型,其比表面积可达300 m2·g-1。  相似文献   

13.
纳米结构TiO2/SiO2的逐层自组装   总被引:2,自引:0,他引:2  
采用逐层自组装方法在二氧化硅球表面交替组装了十二烷基硫酸钠单分子膜和二氧化钛纳米粒子膜 ,该复合多层膜经高温煅烧后得到了核壳型纳米结构二氧化钛 /二氧化硅复合颗粒 .利用XRD ,SEM ,X射线能谱等对复合颗粒进行了表征 .结果表明 :二氧化钛在复合颗粒表面排列紧密、均匀 ,粒径在 5 0nm左右 ,为锐钛矿型结构 .复合颗粒中二氧化钛的含量随组装层数的增加而均匀增加  相似文献   

14.
Functionalized, monocrystalline rutile TiO2 nanorods were prepared from TiCl4 in aqueous solution under acidic conditions in the presence of dopamine, followed by aging and hydrothermal treatment at 150 degrees C. The surface-bound organic ligand controls the morphology as well as the crystallinity and the phase selection of TiO2. The presence of monocrystalline rutile TiO2 was confirmed by X-ray powder diffraction and HRTEM investigations. The as-prepared nanorods are soluble in water at pH <3. The surface functionalization was analyzed by IR and 1H NMR, confirming the presence of dopamine on the surface. The surface amine groups can be tailored further with functional molecules such as dyes. Confocal laser scanning microscopy (CLSM) was used to characterize the binding of the fluorescent dye 4-chloro-7-nitrobenzofurazan (NBD) to the functionalized surface of the TiO2 nanorods.  相似文献   

15.
以具有微孔结构的乙二醇钛(TG)为前驱体, 采用无模板法制备了一系列单分散的介孔TiO2纳米球. 通过溶剂热处理, 微孔前驱体TG原位水解直接转化为具有介孔结构的TiO2纳米球. 通过X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅里叶变换红外光谱(FTIR)及氮气吸附-脱附等对产物进行了表征. 测试结果表明, 产物具有高结晶性、均一的形貌、可调的孔径和比表面积.  相似文献   

16.
Platinized rutile TiO2 samples containing varying concentrations of Pt were synthesized using Kemira (KE, BET surface area 50 m2/g, from Finland), and Toto HT0270 (HT, BET surface area 2.9 m2/g, from Japan) as the starting materials by solution mixing followed by sintering the precursors. Photocatalytic activities were established for phenol oxidation under visible light (wavelength >400 nm). Our results show optimal performance for 8 wt % platinized KE (8 wt % Pt/KE) and (1/2) wt % platinized HT rutile samples. The specific roles of O2 and visible light were examined using the 8 wt % Pt/KE sample in either N2 gas ambient or no illumination. Separately, 8 wt % platinized SiO2 was tested to compare its performance with that of platinized rutile TiO2. Several other chemicals containing different functional groups (formic acid, salicylic acid, 4-chlorophenol, 2,4,6-trichlorophenol, diethyl phosphoramidate) were selected for photooxidation tests with (1/2) wt % platinized HT rutile. X-ray diffraction reveals Pt metal clusters segregating on the surface of rutile TiO2 particles with increasing Pt weight percent. The Pt cluster surface area broadly increases, while the effective optical band gap steadily decreases with platinization of the rutile samples. These results suggest that Pt clusters on the surface of rutile TiO2 particles serve to mediate electron transfer from rutile to O2, thus facilitating photooxidation of organic chemicals.  相似文献   

17.
制备均一形貌的长二氧化钛纳米管   总被引:24,自引:0,他引:24  
张青红  高濂  郑珊  孙静 《化学学报》2002,60(8):1439-1444
在温和的水热条件下,用碱溶液处理不同粒径的锐钛矿相和金红石相二氧化钛 纳米粉体,得到了不同形貌的二氧化钛纳米管,并用TEM,XRD,FT-Raman和BET等 对其进行了表征。金红石相的超细纳米晶有利于形成均一形貌的纳米管,用粒径仅 为7.2 nm的金红石相纳米粉体为前驱体得到了长度为500 nm的长二氧化钛纳米管。 用纳米晶反应活性对晶粒尺寸的依赖性及晶相稳定性解释了长纳米管的形成机理。  相似文献   

18.
We prepared submicron-scale spherical hollow particles of anatase TiO2 by using a polystyrene-bead template. The obtained particles were very uniform in size, with a diameter of 490 nm and a shell thickness of 30 nm. The Brunauer-Emmett-Teller surface area measurements revealed a large value of 70 m2/g. The photocatalytic property was investigated by the complete decomposition of gaseous isopropyl alcohol under UV irradiation. It was indicated that the activity of the hollow spheres was 1.8 times higher than that of the conventional P25 TiO2 nanoparticles with a diameter of 30 nm. Furthermore, we fabricated a dye-sensitized solar cell (DSC) using an electrode of the TiO2 hollow spheres, and examined the photovoltaic performance under simulated sunlight. Although the per-area efficiency was rather low (1.26%) because of a low area density of TiO2 on the electrode, the per-weight efficiency was 2.5 times higher than those of the conventional DSCs of TiO2.  相似文献   

19.
Hierarchical TiO(2) nanostructures would be desirable for preparing dye-sensitized solar cells because of their large amount of dye adsorption and superior light harvesting efficiency, as well as efficient charge separation and transport properties. In this study, rutile TiO(2) nano-branched arrays grown directly on transparent conductive glass (FTO) were prepared by a facile two-step wet chemical synthesis process, using a simple aqueous chemical growth method involving immersing the TiO(2) nanorod arrays in an aqueous TiCl(4) solution as seeds, which were prepared by a hydrothermal method. The dye-sensitized solar cells based on the TiO(2) nano-branched arrays which were only about 3 μm in length show a short-circuit current intensity of 10.05 mA cm(-2) and a light-to-electricity conversion efficiency of 3.75%, which is nearly three times as high as that of bare nanorod arrays, due to the preferable nanostructure, which not only retains the efficient charge separation and transport properties of the nanorod arrays, but also can improve the amount of dye adsorption due to the increased specific surface area from the nanobranches.  相似文献   

20.
TiO2-SiO2 nanocomposite particles were prepared in premixed H2 / Air flame, and the morphology and structure of these nanocomposites were characterized by FTIR, XRD, TEM and HRTEM. The morphology of SiO2 / TiO2 nanocomposites was different from that of pure TiO2 or SiO2 nanoparticles, and the chemical bond of Ti-O-Si was found in the nanocomposites indicating that the TiO2 / SiO2 nanocomposites were not merely a physical mixture of TiO2 and SiO2. TiO2 nanocrystalline grains with sizes of 1~2 nm were homogeneously dispersed in the amorphous SiO2 matrix when TiCl4 and SiCl4 were mixed at molecular level in the flame. The particle size and rutile content decreased with increasing of SiO2 molar ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号