首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stabilised phosphorus ylides react with transient terminal phosphinidene complexes [RP---W(CO)5] (R=Ph, Me) to give products resulting from a formal insertion of P into a C---H bond via an initial nucleophilic attack of the ylidic carbon.  相似文献   

2.
Reactions of (μ-edt)Fe2(CO)6 (edt = SCH2CH2S) (1) with the monophosphine ligands Ph2PCH2Ph, Ph2PC6H11, Ph2PCH2CH2CH3, or P(2-C4H3O)3 in the presence of Me3NO?2H2O afforded (μ-edt)Fe2(CO)5L [L = Ph2PCH2Ph, 2; Ph2PC6H11, 3; Ph2PCH2CH2CH3, 4; P(2-C4H3O)3, 5] in 70–88% yields. Complexes 25 were characterized by spectroscopy and single crystal X-ray diffraction analysis. The phosphorus of 25 is in an apical position of the distorted octahedral geometry of iron.  相似文献   

3.
UV irradiation of complexes of the type (η5-C5H5)(CO)nMSiR3 (n = 2, M = Fe; n = 3, M = Mo) in the presence of phosphorus ligands such as P(XC6H5)3 (X = O, S, CH2) and phosphines containing allyl, 1-naphthyl or tolyl groups gives cyclometalated complexes, R3SiH being eliminated with retention of configuration at Si. In the cyclometalation five-membered rings are formed in preference to six-membered rings, and metalation occurs more easily at sp2 than at sp3 carbon atoms. Methylphenyl-1-naphthylphosphine undergoes rapid racemization upon UV irradiation at room temperature.  相似文献   

4.
Carbonyl substitution reactions of [μ-(SCH2)2CHC6H5]Fe2(CO)6 with bidentate phosphine ligands, cis-1,2-bis(diphenylphosphine)ethylene (cis-dppv) and N,N-bis(diphenylphosphine)propylamine [(Ph2P)2N-Pr-n], yielded an asymmetrically substituted chelated complex [(μ-SCH2)2CHC6H5]Fe2(CO)4(k 2-dppv) and a symmetrically substituted bridging complex [(μ-SCH2)2CHC6H5]Fe2(CO)4[μ-(PPh2)2N-Pr-n] under different reaction conditions. Both complexes were fully characterized by spectroscopic methods and by X-ray crystallography. Their electrochemical behaviors were observed by cyclic voltammetry, and the catalytic electrochemical reduction of protons from acetic or trifluoroacetic acid to give dihydrogen mediated by complex [(μ-SCH2)2CHC6H5]Fe2(CO)4(k 2-dppv) was investigated.  相似文献   

5.
1,3,2-diazaphospholenes and related compounds can formally be regarded as complexes of phosphinidenes (R-P) with 1,4-diazabutadienes. The dissociation Gibbs free energies of these "complexes" were calculated by using density functional theory (B3LYP/3-21G(*) and B3LYP/6-311+G**). The dissociation Gibbs free energies show systematic dependence on the phosphorus substituent as well as on the stability of the N-donor ligand formed as a byproduct. The thermodynamics and kinetics of the dissociations were thoroughly examined. The results allow us to conclude that novel routes of phosphinidene generation can be developed.  相似文献   

6.
Four diiron toluenedithiolate complexes 25 with monophosphine ligands are reported. Treatment of [μ-SC6H3(CH3)S-μ]Fe2(CO)6 (1) with tris(3-chlorophenyl)phosphine, tris(4-chlorophenyl)phosphine, tris(4-methylphenyl)phosphine or 2-(diphenylphosphino)benzaldehyde, and Me3NO?2H2O in MeCN resulted in the formation of [μ-SC6H3(CH3)S-μ]Fe2(CO)5[P(3-C6H4Cl)3] (2), [μ-SC6H3(CH3)S-μ]Fe2(CO)5[P(4-C6H4Cl)3] (3), [μ-SC6H3(CH3)S-μ]Fe2(CO)5[P(4-C6H4CH3)3] (4), and [μ-SC6H3(CH3)S-μ]Fe2(CO)5[Ph2P(2-C6H4CHO)] (5) in 64–82% yields. Complexes 25 have been characterized by elemental analysis, IR, 1H NMR, 31P{1H} NMR, 13C{1H} NMR and further confirmed by single crystal X-ray diffraction analysis. The molecular structures show that 25 contain a butterfly diiron toluenedithiolate cluster coordinated by five terminal carbonyls and an apical monophosphine.  相似文献   

7.
Routes of white phosphorus activation in the coordination sphere of the nickel complexes with different ligands are shown. The first route is based on the coordination of a P4 molecule with the metal, resulting in the deformation of the P4 tetrahedron without destruction. This case is characteristic of the NiX2L complexes, which are reduced at higher cathodic potentials (|Ered| > 0.9 V) (X = BF4, Br, and Cl; L is bpy in DMF, MeCN, and acetone; 2,9-dimethyl-1,10-phenanthroline (phen) and PPh3 in DMF and acetone). To cleave the P—P bonds in the P4 molecule, this complex should be reduced on the electrode. The second route is the oxidation of white phosphorus in the coordination sphere of the NiII complex. It occurs when the complex has a sufficiently high oxidizing ability and is reduced rather easily (|Ered| < 0.9 V) (X = BF4, L is 1,1,1-tris(diphenylphosphinomethyl)ethane (triphos) in acetone; 1,1′,5,5′-bis[methylenedi(p-phenylene)]di(3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane) (n2p2) in DMF; phen and PPh3 in MeCN). The P4 molecule opening is observed to form a new NiI complex containing the (P3) fragment, for example, [(triphos)Ni(P3)Ni(triphos)](BF4)2. Dedicated to the Academician V. I. Minkin on the occasion of his 70th birthday. __________ Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 919–924, April, 2005.  相似文献   

8.
Reactivity, kinetic, and thermodynamic studies are reported for reactions of a rhodium(II) bimetalloradical with H(2), and with the methyl C-H bonds for a series of substrates CH(3)R (R = H, CH(3), OH, C(6)H(5)) using a m-xylyl diether tethered diporphyrin ligand. Bimolecular substrate reactions involving the intramolecular use of two metalloradical centers and preorganization of the four-centered transition state (M*...X...Y*...M) result in large rate enhancements as compared to termolecular reactions of monometalloradicals. Activation parameters and deuterium kinetic isotope effects for the substrate reactions are reported. The C-H bond reactions become less thermodynamically favorable as the substrate steric requirements increase, and the activation free energy (DeltaG++) decreases regularly as DeltaG degrees becomes more favorable. An absolute Rh-H bond dissociation enthalpy of 61.1 +/- 0.4 kcal mol(-1) is directly determined, and the derived Rh-CH(2)R BDE values increase regularly with the increase in the C-H BDE.  相似文献   

9.
Reaction of the diiron propanedithiolate complex [μ-(SCH2)2CHO2CC6H5]Fe2(CO)6 (A) with triphenylphosphine (PPh3) or cis-1,2-bis(diphenylphosphine)ethylene (cis-dppv) in the presence of one equivalent of Me3NO·2H2O yielded a mono-substituted complex [μ-(SCH2)2CHO2CC6H5]Fe2(CO)5(PPh3) (1) or an asymmetrically substituted complex [(μ-SCH2)2CHO2CC6H5]Fe2(CO)4(κ2-dppv) (2), respectively. The structures of both complexes were characterized by spectroscopic methods and X-ray crystallography. In the solid state, the PPh3 ligand in 1 occupies an apical position of the square pyramidal geometries of the Fe2, while the cis-dppv in 2 coordinates Fe2 in an apical-basal manner. The electrochemistry of both complexes was investigated. The electron-withdrawing benzoate functionality on the bridgehead carbon of the propanedithiolate bridge shifts the oxidation and reduction potentials of 1 or 2 slightly. Both complexes can catalyze the reduction of protons from CF3COOH but with a higher efficiency for 2.  相似文献   

10.
Evidence is presented for the intermediacy of a terminal phosphinidene complex, [2,4,6-(t-Bu)3C6H2]PFe(CO)4, in the reaction of [2,4,6-(t-Bu)3C6H2]PCO with Fe2(CO)9.  相似文献   

11.
The borane B(C(6)F(5))(3) is a precatalyst for H/Dexchange between H(2) and deuterium-labeled silanes (D(3)SiPh, D(2)SiMePh, DSiMe(2)Ph, DSiEt(3)). Experimental and DFT studies reveal that B(C(6)F(5))(3) itself cannot activate dihydrogen but converts to HB(C(6)F(5))(2) under the action of hydrosilane. The latter species easily activates H-H and Si-H bonds by a σ-bond metathesis mechanism, which was further confirmed by the reactions of BD(3)·THF with H(2).  相似文献   

12.
The zwitterionic bridging vinyliminium complex [Fe2{μ-η13-C(Tol)C(CS2)CN(Me)2}(μ-CO)(CO)(Cp)2] (5a) undergoes the addition of two equivalents of MeO2C-CC-CO2Me affording the bridging bis-alkylidene complex [Fe2{μ-η13-C(Me)C{C(CO2Me)C(CO2Me)CSC(CO2Me)C(CO2Me)S}CNMe2}(μ-CO)(CO)(Cp)2] (6). One alkyne unit inserts into a C-CS2 bond of the bridging ligand, with consequent rearrangement that leads to the formation of a diene. The reaction shows analogies with the enyne metathesis. The second alkyne is incorporated into the bridging frame via cycloaddition at the thiocarboxylate function, affording a 1,3-dithiolene. The complexes [Fe2{μ-η13-C(R′)C(CS2)CN(Me)(R)}(μ-CO)(CO)(Cp)2] (R = Xyl, R′ = Tol, 5b; R = p-C6H4OMe, R′ = Me, 5c; Xyl = 2,6-Me2C6H3), treated with MeO2C-CC-CO2Me and then with HBF4, undergo the cycloaddition of the alkyne with the dithiocarboxylate group and protonation of the dithiocarboxylate carbon, affording the complexes [Fe2{μ-η13-C(R′)C{C(H)SC(CO2Me)C(CO2Me)S}CN(Me)(R)}(μ-CO)(CO)(Cp)2][BF4] (R = Xyl, R′ = Tol, 7a; R = p-C6H4OMe, R′ = Me, 7b), respectively.The X-ray molecular structure of 6 has been determined.  相似文献   

13.
14.
Hydrogen-atom abstraction from M-E(H) to generate M═E-containing complexes (E = PR, NR) is not well studied because only a few complexes are known to undergo such reactions. Hydrogen-atom abstraction from nickel(I) phosphide and amide complexes led to the corresponding phosphinidene and imide compounds. These reactions are unparalleled in the organometallic chemistry of nickel and feature an unusual example of a transition-metal phosphinidene synthesized by hydrogen-atom abstraction.  相似文献   

15.
A series of new complexes with mixed ligands of the type M(4,4’-dipy)(C3H3O2)2(H2O)y ((1) M=Mn, y=2; (2) M=Ni, y=2; 4,4’-dipy: 4,4’-dipyridyl and C3H3O2 is acrylate anion) and respectively M2(4,4’-dipy)(C3H3O2)4(H2O)y ((3) M=Cu, y=0; (4) M=Zn, y=1). The modification evidenced in IR spectra was correlated with the presence of acrylate ion as unidentate in the case of complex (1) and as bidentate for others complexes. The electronic reflectance spectra showed the dd transition for complex (1) and (2) characteristic for the octahedral surrounding while the spectrum for complex (3) have the characteristic pattern for square-pyramidal stereochemistry. The thermal behaviour steps were investigated. The thermal transformations are complex processes according to TG and DTG curves including dehydration, acrylate ion oxidative degradation and thermolysis process of aromatic amine. The final products of decomposition are the most stable metal oxides.  相似文献   

16.
A bis(diethylamido)hafnium compound [C4H3N(CH2NMe2)-2]2Hf(NEt2)2 (1) has been prepared in 79% yield by reacting Hf(NEt2)4 with 2 equiv. of [C4H3NH(CH2NMe2)-2] in heptane via deamination. Reacting compound 1 with 2 equiv. of phenyl isocyanate at room temperature in diethyl ether results in the PhNCO being inserted seletively into hafnium-NEt2 bonds to generate [C4H3N(CH2NMe2)-2]2Hf[PhNC(NEt2)O]2 (2) in 56% yield. Similarly, while reacting 1 with 2 equiv. of phenyl isocyanate for a week in toluene produces a mixture of 2 and [C4H3N(CH2NMe2)-2]Hf[PhNC(NEt2)O]3 (3). For comparison, reacting Hf(NEt2)4 with 4 equiv. of PhNCO in a toluene solution at room temperature results in the PhNCO inserted into Hf-N bonds, and forms a tetrakis-ureato hafnium compound Hf[PhNC(NEt2)O]4 (4) in 88% yield. A theoretical calculation found that the unpaired electrons of the ureato fragments of 2 are resonance delocalized between the C-O, C-NPh, and C-NEt2 bonds, which are all partially doubly bonded.  相似文献   

17.
This paper reports the investigation of the thermal stability of a series of new complexes with mixed ligands of the type M(dipy)(C3H3O2)2(H2O)y ((1) M: Mn, y=1; (2) M: Ni, y=2; (3) M: Cu, y=1; (4) M: Zn, y=2; dipy: 2,2’-dipyridine and C3H3O2 is acrylate anion). The thermal behaviour steps were investigated. The thermal transformations are complex processes according to TG and DTG curves including dehydration, oxidative condensation of acrylate and thermolysis processes. The final products of decomposition are the most stable metal oxides.  相似文献   

18.
19.
Summary The preparation of the covalent Rh(OCIO3)(CS)(PCy3)2 and Rh(OClO3)(CS)(PPh3)(PCy3) perchlorato complexes is described, These complexes react with mono- or bidentate nitrogen donor ligands to give new cationic complexes of the [Rh(CS)(PCY3)2L]ClO4 and [Rh(CS)(PPh,)(PCy3)L]ClO4 types,  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号