首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polarization modulation infrared reflectance absorption spectroscopy (PM-IRRAS) and infrared reflectance absorption spectroscopy (IRRAS) have been used to characterize the formation of a self-assembled monolayer of N-(3-dihydroxyborylphenyl)-11-mercaptoundecanamide) (abbreviated PBA) on a gold surface and the subsequent binding of various sugars to the PBA adlayer through the phenylboronic acid moiety to form a phenylboronate ester. Vibrationally resonant sum frequency generation (VR-SFG) spectroscopy confirmed the ordering of the substituted phenyl groups of the PBA adlayer on the gold surface. Solution FTIR spectra and density functional theory were used to confirm the identity of the observed vibrational modes on the gold surface of PBA with and without bound sugar. The detection of the binding of glucose on the gold surface was confirmed in part by the presence of a C-O stretching mode of glucose and the observed O-H stretching mode of glucose that is shifted in position relative to the O-H stretching mode of boronic acid. An IR marker mode was also observed at 1734 cm(-1) upon the binding of glucose. Additionally, changes in the peak profile of the B-O stretching band were observed upon binding, confirming formation of a phenylboronate ester on the gold surface. The binding of mannose and lactose were also detected primarily through the IR marker mode at approximately 1736 to 1742 cm(-1) depending on the identity of the bound sugar.  相似文献   

2.
The Cuban chromites with a spinel structure, FeCr2O4 have been studied using optical absorption and EPR spectroscopy. The spectral features in the electronic spectra are used to map the octahedral and tetrahedral co-ordinated cations. Bands due Cr3+ and Fe3+ ions could be distinguished from UV-vis spectrum. Chromite spectrum shows two spin allowed bands at 17,390 and 23,810 cm(-1) due to Cr3+ in octahedral field and they are assigned to 4A2g(F) --> 4T2g(F) and 4A2g(F) --> 4T1g(F) transitions. This is in conformity with the broad resonance of Cr3+ observed from EPR spectrum at g = 1.903 and a weak signal at g = 3.861 confirms Fe3+ impurity in the mineral. Bands of Fe3+ ion in the optical spectrum at 13,700, 18,870 and 28,570 cm(-1) are attributed to 6A1g(S) --> 4T1g(G), 6A1g(S) --> 4T2g(G) and 6A1g(S) --> 4T2g(P) transitions, respectively. Near-IR reflectance spectroscopy has been used effectively to show intense absorption bands caused by electronic spin allowed d-d transitions of Fe2+ in tetrahedral symmetry, in the region 5000-4000 cm(-1). The high frequency region (7500-6500 cm(-1)) is attributed to the overtones of hydroxyl stretching modes. Correlation between Raman spectral features and mineral chemistry are used to interpret the Raman data. The Raman spectrum of chromite shows three bands in the CrO stretching region at 730, 560 and 445 cm(-1). The most intense peak at 730 cm(-1) is identified as symmetric stretching vibrational mode, A1g(nu1) and the other two minor peaks at 560 and 445 cm(-1) are assigned to F2g(nu4) and E(g)(nu2) modes, respectively. Cation substitution in chromite results various changes both in Raman and IR spectra. In the low-wavenumber region of Raman spectrum a significant band at 250 cm(-1) with a component at 218 cm(-1) is attributed F2g(nu3) mode. The minor peaks at 195, 175, 160 cm(-1) might be due to E(g) and F2g symmetries. Broadening of the peak of A1g mode and shifting of the peak to higher wavenumber observed as a result of increasing the proportion of Al3+O6. The presence of water in the mineral shows bands in the IR spectrum at 3550, 3425, 3295, 1630 and 1455 cm(-1). The vibrational spectrum of chromite gives raise to four frequencies at 985, 770, 710 and 650 cm(-1). The first two frequencies nu1 and nu2 are related to the lattice vibrations of octahedral groups. Due to the influence of tetrahedral bivalent cation, vibrational interactions occur between nu3 and nu4 and hence the low frequency bands, nu3 and nu4 correspond to complex vibrations involving both octahedral and tetrahedral cations simultaneously. Cr3+ in Cuban natural chromites has highest CFSE (20,868 cm(-1)) when compared to other oxide minerals.  相似文献   

3.
The vibrational properties of mesoporous silica (SBA-15) were investigated by deep ultraviolet (UV) Raman and infrared spectroscopies with and without the presence of platinum nanoparticles in the mesopores that were incorporated by sonication. Raman and IR spectral line assignments were made by comparison to amorphous silicas. This procedure permitted identification of vibrations of longitudinal (LO) and transverse (TO) optical lattice modes, the presence of Si-OH, and vibrational modes associated with the presence of three-, four-, and six-membered siloxane rings. Hydraulic pressing of the mesoporous silica with pressure in the range 3-7 tons cm(-2) destroys the X-ray diffraction pattern and strongly decreases the Raman peak (D2) associated with three-membered rings at the surface. In the presence of platinum nanoparticles in the silica mesopores, a peak attributed to a Pt-O stretching vibration appears at between 530 and 580 cm(-1) in the UV-Raman spectrum, which can be used to monitor the presence of the platinum particles and their interaction with the support. The D2 feature in the UV-Raman spectra also decreases with increasing Pt loading, which is attributed to interactions of the Pt nanoparticles with the silica surface.  相似文献   

4.
Differential capacity, charge density measurements, and polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) were employed to study the fusion of small unilamellar vesicles of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) on a Au(111) electrode surface. The differential capacity and charge density data showed that the vesicles fuse onto the gold surface at charge densities between -10 microC/cm(2) < sigma(M) < 10 microC/cm(2) to form a bilayer. When sigma(M) < -10 microC/cm(2), the film is detached from the surface but it remains in close proximity to the surface. PM-IRRAS experiments provided IR spectra for the bilayer in the adsorbed and the desorbed state. Ab initio normal coordinate calculations were performed to assist interpretation of the IR spectra. The IR bands were analyzed quantitatively, and this analysis provided information concerning the conformation and orientation of the acyl chains and the polar head region of the DMPC molecule. The orientation of the chains, hydration, and conformation of the headgroup of the DMPC molecule strongly depend on the electrode potential.  相似文献   

5.
We address, both experimentally and theoretically, the issue of infrared (IR) resonance enhanced multiphoton ionization (IR-REMPI) and thermally induced redshifts of IR absorption lines in a very large and highly vibrationally excited molecular system. Isolated superhot C60 molecules with well defined and variable average vibrational energy in the range of 9-19 eV, effusing out of a constant flux thermal source, are excited and ionized after the absorption of multiple (500-800) infrared photons in the 450-1800 cm(-1) spectral energy range. Recording the mass-selected ion signal as a function of IR wavelength gives well resolved IR-REMPI spectra, with zero off-resonance background signal. An enhancement of the ion signal of about a factor of 10 is observed when the temperature is increased from 1200 to 1800 K under otherwise identical conditions. A pronounced temperature dependent redshift of some of the IR absorption lines is observed. The observations are found to be in good agreement with a model which is based on the sequential absorption of single photons, always followed by instantaneous vibrational energy redistribution. The mass spectra (C60(+) fragmentation pattern) are found to be strongly excitation wavelength dependent. Extensive fragmentation down to C32(+) is observed following the absorption of 1350-1400 cm(-1) as well as 1500-1530 cm(-1) photons while negligible fragmentation is observed when exciting around 520 cm(-1).  相似文献   

6.
Herba Epimedii is a well-known traditional Chinese medicine (TCM) having the effect of nourishing the kidney and strengthening the 'Yang'. Its primary effective constituents are considered to be the 8-prenyl flavonols, which can be assorted into 4'-methoxyl-prenylflavonols (MPFs) and 4'-hydroxyl-prenylflavonols (HPFs), according to the group (methoxyl or hydroxyl) located at 4' in their structures. The Fourier transform infrared spectroscopy (FT-IR) has been widely used in the researches of TCMs. In the present study, the FT-IR was attempted to be applied in the quality control of Herba Epimedii. We compared the IR spectra of 17 pure flavonoids, of which eight were derived from Herba Epimedii, and found a characteristic absorption peak at 1259+/-1 cm(-1), corresponding to the MPFs, the major 8-prenyl flavonols in the aerial parts of the Epimedium species. This peak could also be found in the IR spectra of both the herbal samples and their 70% ethanol extracts. Moreover, the intensity of this peak was in the direct correlation with the total content of MPFs. The correlation values, representing the semblance of two spectra, of the IR spectrum of herbal sample and icariin, in the range of 1280-1200 cm(-1), had been established to be a good index for the quality control of the herbs. Accordingly, a correlation value of not less than 0.50 could be used as the essential screening criteria for the herbs. The FT-IR could be used for the fast and effective quality control of Herba Epimedii.  相似文献   

7.
Infrared spectra in the mid-infrared region (800-1600 cm(-1)) of highly unsaturated Fe(+)-hydrocarbon complexes isolated in the gas phase are presented. These organometallic complexes were selectively prepared by ion-molecule reactions in a Fourier transform ion cycloton mass spectrometer (FTICR-MS). The infrared multiphoton dissociation (IRMPD) technique has been employed using the free electron laser facility CLIO (Orsay, France) to record the infrared spectra of the mass selected complexes. The experimental IRMPD spectra present the main features of the corresponding IR absorption spectra calculated ab initio. As predicted by these calculations, the experimental spectra of three selectively prepared isomers of Fe+(butene) present differences in the 800-1100 cm(-1) range. On the basis of the comparison with calculated IR spectra, the IRMPD spectrum of Fe(butadiene)(+) suggests that the ligand presents the s-trans isomeric form. This study further confirms the potentialities of IRMPD spectroscopy for the structural characterization of organometallic ionic highly reactive intermediates in the gas phase. In conjunction with soft ionization techniques such as electrospray, this opens the door to the gas-phase characterization of reactive intermediates associated with condensed phase catalysts.  相似文献   

8.
The interaction between bacterial cells of Pseudomonas fluorescens (ATCC 17552) and gold electrodes was analyzed by cyclic voltammetry (CV) and attenuated total reflection-surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS). The voltammetric evaluation of cell adsorption showed a decrease in the double-layer capacitance of polyoriented single-crystal gold electrodes with cell adhesion. As followed by IR spectroscopy in the ATR configuration, the adsorption of bacterial cells onto thin-film gold electrodes was mainly indicated by the increase in intensity with time of amide I and amide II protein-related bands at 1664 and 1549 cm(-1), respectively. Bands at 1448 and 2900 cm(-1) corresponding to the scissoring and the stretching bands of CH2 were also detected, together with a minor peak at 1407 cm(-1) due to the vs COO- stretching. Weak signals at 1237 cm(-1) were due to amide III, and a broad band between 1100 and 1200 cm(-1) indicated the presence of alcohol groups. Bacteria were found to displace water molecules and anions coadsorbed on the surface in order to interact with the electrode intimately. This fact was evidenced in the SEIRAS spectra by the negative features appearing at 3450 and 3575 cm-1, corresponding to interfacial water directly interacting with the electrode and water associated with chloride ions adsorbed on the electrode, respectively. Experiments in deuterated water confirmed these assignments and allowed a better estimation of amide absorption bands. In CV experiments, an oxidation process was observed at potentials higher than 0.4 V that was dependent on the exposure time of electrodes in concentrated bacterial suspensions. Adsorbed bacterial cells were found to get closer to the gold surface during oxidation, as indicated by the concomitant increment in the main IR bacterial signals including amide I, a sharp band at 1240 cm(-1), and a broad one at 1120 cm(-1) related to phosphate groups in the bacterial membranes. It is proposed to be due to the oxidation of lipopolysaccharides on the outermost bacterial surface.  相似文献   

9.
To construct two-dimensional infrared (2D IR) spectra having all vibrational modes of a molecule included is still quite challenging, both experimentally and theoretically. Here we report an ab initio-based all-mode 2D IR spectra simulation approach. Using deuterated glycolaldehyde (CH2OHCDO), the smallest sugar as a model molecule, we have calculated correlation 2D IR spectrum of its entire 3N-6 (N=8) normal modes in the mid-to-far-IR region (4000-0 cm(-1)), using quantum chemical anharmonic frequency and anharmonicity computations in conjunction with time-domain third-order nonlinear response functions. The calculated 2D IR spectra were found to contain a network of structural and dynamical parameters of the molecule. It is found that certain spectral regions, once enlarged, show features that are in reasonable agreement with limited but already available single- and dual-frequency 2D IR experimental results. The extension of narrow-band 2D IR spectroscopy into the full mid-to-far-IR regime would allow us to characterize the structural distributions and dynamics of molecular complexes in condensed phases with sufficient number of parameters.  相似文献   

10.
Raman spectra of randomly-oriented kaolinite, dickite and nacrite show, for coarsely crystalline material, an extra band in the OH stretching region which is absent from the IR spectra of clay-size samples. Oriented single-crystal Raman spectra of these minerals provide confirmation for the assignment of the extra bands to transverse optical modes involving in-phase coupled vibrations of the layer-surface hydroxyl groups. The corresponding IR bands have transition moments nearly perpendicular to the layer surface, and appear at the higher frequencies of the longitudinal optical modes of macroscopic crystals.  相似文献   

11.
The optical absorption studies of sodium copper chlorophyllin thin films (SCC), prepared by spray pyrolysis, in the UV-vis-NIR region was reported for the first time. Several new discrete transitions are observed in the UV-vis region of the spectra in addition to a strong continuum component in the IR region. The spectra of the infrared absorption allow characterization of vibration modes for the powder and thin films of SCC. The absorption spectrum recorded in the UV-vis region showed different absorption bands, namely the Soret (B) in the region 340-450 nm and Q-band in the region 600-700 nm and other band labeled N in the 240-320 region. Some important spectral parameters namely optical absorption coefficient (alpha), molar extinction coefficient (epsilon(molar)), oscillator strength (f), electric dipole strength (q(2)) and absorption half bandwidth (Deltalambda) of the principle optical transitions were evaluated. The analysis of the absorption coefficient in the absorption region revealed direct transitions and the energy gap was estimated as 1.63 eV. Discussion of the obtained results and their comparison with the previous published data are also given.  相似文献   

12.
New infrared spectra are reported for variously labelled trisilylamines. Quantum-chemical (QC) calculations of structure and force field have been made at HF, MP2 and B3LYP levels, each with the 6-31G* and 6-311G** basis sets. At each level, a minimum in the potential surface occurs at the C3h configuration. No evidence was found for a significant variation in SiH bond length with orientation. The appearance of two bands in the infrared spectrum of N(SiH3)3 in the 2nuSiH region is explained by local mode theory in terms of transitions to (200) and (110) levels. In the gas phase, signal averaging appears to occur in the nuSiH region in the infrared spectrum, but not in the Raman. In solid films, both IR and Raman spectra indicate the presence of a range of SiH bond strengths, corresponding to an absence of any site symmetry. Each complete QC calculated force field was fitted to the frequencies observed for N(SiH3)3 and N(SiD3)3, using nine independent scale factors. An interaction force constant between nu(as)NSi3 and delta(s)SiH3 motions required further adjustment. Unobserved frequencies in the d0 and d9 species are predicted. The out-of-plane skeletal bending mode is expected to lie between 170 and 200 cm(-1). Unscaled SiH3 torsional frequencies vary from 64 cm(-1) upwards. The effect of the presence of three internal rotors on the spectra throughout calls for theoretical study.  相似文献   

13.
The linear-infrared and two-dimensional infrared (2D IR) spectra in the amide-I' region of the alanine dipeptide and its (13)C isotopomers in aqueous solution (D(2)O) are reported. The two amide-I' IR transitions have been assigned unambiguously by using (13)C isotopic substitution of the carbonyl group; the amide unit at the acetyl end shows a lower transition frequency in the unlabeled species. The ratio of their transition dipole strengths remains almost unchanged upon (13)C substitution, indicating the absence of intensity transfer between two vibrators. The 2D IR cross peaks directly associated with intramode coupling in this case show a small off-diagonal anharmonicity (0.2 +/- 0.2 cm(-1)), leading to a small coupling constant (1.5 +/- 0.5 cm(-1)). The coupling and the 2D IR spectra in two different polarizations (zzzz and zxxz) are as expected for a polyproline-II (PP(II))-like conformation for dialanine, with the backbone dihedral angles (phi, psi) determined to be in the range of (-70 degrees +/- 25 degrees, +120 degrees +/- 25 degrees). Ab initio DFT calculations and normal mode decoupling analysis in the Ramachandran subspace in the neighborhood of PP(II) conformation confirm the presence of a region where the coupling is vanishingly small and support these experimental findings. The relationship between the coupling and off-diagonal anharmonicity is consolidated by examining the distribution of the latter from an ensemble averaged Hamiltonian incorporating uncorrelated diagonal frequency distributions and a small coupling (<2 cm(-1)); it is found that the most probable value for the off-diagonal anharmonicity falls into the range of experimental observations. Further, incorporating DFT results, the simulated linear-IR and 2D IR can reproduce the essential features of the measurements, including the transition frequency positions and apparent peak intensities. All the experimental results and simulations are consistent with a PP(II)-like conformation for the alanine dipeptide in aqueous solution, in which two amide-I' modes are highly localized and whose frequency distributions are uncorrelated.  相似文献   

14.
The scattering effects in the infrared (IR) spectra of single, isolated bread yeast cells (Saccharomyces cerevisiae) on a ZnSe substrate and in metal microchannels have been probed by Fourier transform infrared imaging microspectroscopy. Absolute extinction [(3.4±0.6)×10(-7) cm(2) at 3178 cm(-1)], scattering, and absorption cross sections for a single yeast cell and a vibrational absorption spectrum have been determined by comparing it to the scattering properties of single, isolated, latex microspheres (polystyrene, 5.0 μm in diameter) on ZnSe, which are well modeled by the Mie scattering theory. Single yeast cells were then placed into the holes of the IR plasmonic mesh, i.e., metal films with arrays of subwavelength holes, yielding "scatter-free" IR absorption spectra, which have undistorted vibrational lineshapes and a rising generic IR absorption baseline. Absolute extinction, scattering, and absorption spectral profiles were determined for a single, ellipsoidal yeast cell to characterize the interplay of these effects.  相似文献   

15.
By carrying out molecular dynamics simulations of an N-methylacetamide (NMA) in methanol solution, the amide I mode frequency fluctuation and hydrogen bonding dynamics were theoretically investigated. Combining an extrapolation formula developed from systematic ab initio calculation studies of NMA-(CH3OH)n clusters with a classical molecular dynamics simulation method, we were able to quantitatively describe the solvatochromic vibrational frequency shift induced by the hydrogen-bonding interaction between NMA and solvent methanol. It was found that the fluctuating amide I mode frequency distribution is notably non-Gaussian and it can be decomposed into two Gaussian peaks that are associated with two distinctively different solvation structures. The ensemble-average-calculated linear response function associated with the IR absorption is found to be oscillating, which is in turn related to the doublet amide I band shape. Numerically calculated infrared absorption spectra are directly compared with experiment and the agreement was found to be excellent. By using the Onsager's regression hypothesis, the rate constants of the interconversion process between the two solvation structures were obtained. Then, the nonlinear response functions associated with two-dimensional infrared pump-probe spectroscopy were simulated. The physics behind the two-dimensional line shape and origin of the cross peaks in the time-resolved pump-probe spectra is explained and the result is compared with 2D spectra experimentally measured recently by Woutersen et al.  相似文献   

16.
In this study, a new method, a three-stage infrared spectroscopy (Fourier transform infrared spectroscopy (FT-IR) integrated with second derivative infrared spectroscopy and two-dimensional correlation infrared spectroscopy (2D-IR)) was developed to analyze the organic and inorganic compositions of three different horns (Cornu Antelopis, Cornu Bubali and Pulvis Cornus Bubali Concentratus). In IR spectra, all the three horns had their own macroscopic fingerprints especially for those compositions containing amide groups, CH groups and Ca(3)(PO(4))(2). Their second derivative spectra amplified the differences and revealed the potentially characteristic IR absorption bands 1350-400 cm(-1) to be investigated in 2D-IR. Subsequently, many covered characteristic fingerprints were disclosed in 2D-IR spectra in the range of 1350-400 cm(-1) and the three horns were therefore effectively discriminated. Meanwhile, the analysis results of inorganic constituents were verified by atomic spectroscopy. Furthermore, thirty different horn samples including ten of each horn were also successfully classified by soft independent modeling of class analogy (SIMCA). It was demonstrated that the above three-stage infrared spectroscopy could be applicable for quick, non-destructive and effective analysis and identification of very complicated and similar mixture systems (e.g. traditional Chinese medicines).  相似文献   

17.
Structural characterization of protonated phosphorylated serine, threonine, and tyrosine was performed using mid-infrared multiple photon dissociation (IRMPD) spectroscopy and density functional theory (DFT) calculations. The ions were generated and analyzed by an external electrospray source coupled to a Paul ion-trap type mass spectrometer. Their fragmentation was induced by the resonant absorption of multiple photons from a tunable free electron laser (FEL) beam. IRMPD spectra were recorded in the 900-1850 cm(-1) energy range and compared to the corresponding computed IR spectra. On the basis of the frequency and intensity of two independent bands in the 900-1400 cm(-1) energy range, it is possible to identify the phosphorylated residue. IRMPD spectra for a 12-residue fragment of stathmin in its phosphorylated and nonphosphorylated forms were also recorded in the 800-1400 cm(-1) energy range. The lack of spectral congestion in the 900-1300 cm(-1) region makes their distinction facile. Our results show that IRMPD spectroscopy may became a valuable tool for structural characterization of small phosphorylated peptides.  相似文献   

18.
Infrared spectra of the protonated monomers of glycine, alanine, valine, and leucine methyl esters are presented. These protonated species are generated in the gas phase via matrix assisted laser desorption ionization (MALDI) within the cell of a Fourier transform ion cyclotron resonance spectrometer (FTICR) where they are subsequently mass selected as the only species trapped in the FTICR cell. Alternatively, they have also been generated by electrospray ionization and transferred to a Paul ion-trap mass spectrometer where they are similarly isolated. In both cases IR spectra are then derived from the frequency dependence of the infrared multiple photon dissociation (IRMPD) in the mid-infrared region (1000-2200 cm(-1)), using the free electron laser facility Centre de Laser Infrarouge d'Orsay (CLIO). IR bands are assigned by comparison with the calculated vibrational spectra of the lowest energy isomers using density functional theory (DFT) calculations. There is in general good agreement between experimental IRMPD spectra and calculated IR absorption spectra for the lowest energy conformer which provides evidence for conformational preferences. The two different approaches to ion generation and trapping yield IRMPD spectra that are in excellent agreement.  相似文献   

19.
The measurement of absorption spectra using angle-dependent terahertz (THz) time-domain spectroscopy for amino acid single crystals of l-cysteine and l-histidine is reported for the first time. Linearly polarized THz radiation enables us to observe angle-dependent far-infrared absorption spectra of amino acid single crystals and determine the direction of the oscillating dipole of the molecules in the 20-100 cm(-1) range. By comparing the THz spectra of a single crystal and powder, we found that there was a clear hydrogen-bond peak in the crystal spectrum as a result of the larger hydrogen-bond network. The low-temperature THz spectra of amino acid microcrystals showed more intermolecular vibrational modes than those measured at room temperature. An ab initio frequency calculation of a single amino acid molecule was used to predict the intramolecular vibrational modes. The validity of the calculation models was confirmed by comparing the results with experimentally obtained data in the Raman spectral region.  相似文献   

20.
Vibrational spectra of methyl C-H stretching region are notoriously complicated, and thus a theoretical method of systematic assignment is strongly called for in condensed phase. Here we develop a unified analysis method of the vibrational spectra, such as infrared (IR), polarized and depolarized Raman, and ssp polarized sum frequency generation (SFG), by flexible and polarizable molecular dynamics simulation. The molecular model for methanol has been developed by charge response kernel model to allow for analyzing the methyl C-H stretching vibrations. The complicated spectral structure by the Fermi resonance has been unraveled by empirically shifting potential parameters, which provides clear information on the coupling mechanism. The analysis confirmed that for the IR, polarized Raman, and SFG spectra, two-band structure at about 2830 and 2950 cm(-1) results from the Fermi resonance splitting of the methyl C-H symmetric stretching and bending overtones. In the IR spectrum, the latter, higher-frequency band is overlapped with prominent asymmetric C-H stretching bands. In the depolarized Raman spectrum, the high frequency band at about 2980 cm(-1) is assigned to the asymmetric C-H stretching mode. In the SFG spectrum, the two bands of the splitted symmetric C-H stretching mode have negative amplitudes of imaginary nonlinear susceptibility χ(2), while the higher-frequency band is partly cancelled by positive imaginary components of asymmetric C-H stretching modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号