首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
模板法制备复合中空微球   总被引:3,自引:1,他引:2  
本文报道以一种商品化的聚苯乙烯中空球为模板, 采用溶胀聚合技术合成了具有IPN(Inter-Penetrating Network)结构的复合中空球; 对其中的一种高分子网络进行化学改性引入所需官能团, 制得带有羧基的聚合物凝胶中空球; 利用凝胶诱导生长特性, 成功制得聚合物复合中空球. 此方法无需去除模板就可批量制备各种复合功能中空球.  相似文献   

2.
In this study,we have established a facile method to synthesize functional hollow carbon spheres with large hollow interior,which can act as active colloidal catalysts.The method includes the following steps:first,hollow polymer spheres with large hollow interior were prepared using sodium oleate as the hollow core generator,and 2,4-dihydroxybenzoic acid and hexamethylene tetramine(HMT) as the polymer precursors under hydrothermal conditions;Fe 3+ or Ag + cations were then introduced into the as-prepared hollow polymer spheres through the carboxyl groups;finally,the hollow polymer spheres can be pseudomorphically converted to hollow carbon spheres during pyrolysis process,meanwhile iron or silver nanoparticles can also be formed in the carbon shell simultaneously.The structures of the obtained functional hollow carbon spheres were characterized by TEM,XRD,and TG.As an example,Ag-doped hollow carbon spheres were used as colloid catalysts which showed high catalytic activity in 4-nitrophenol reduction reaction.  相似文献   

3.
A surfactant-assisted method for preparing colloidal spheres with narrow size distribution from a polydispersed azo polymer has been developed in this work. The colloidal spheres were formed through gradual hydrophobic aggregation of the polymeric chains in THF-H2O dispersion media, which was induced by a steady increase in the water content. Results showed that the addition of a small amount of surfactant (SDBS) could significantly narrow the size distribution of the colloidal spheres. The size distribution of the colloidal spheres was determined by the concentrations of azo polymer and the amount of surfactant in the systems. When the concentrations of polymer and surfactant amount were in a proper range, colloidal spheres with narrow size distribution could be obtained. The colloidal spheres formed by this method could be elongated along the polarization direction of the laser beams to be a new type of the colloid-based functional materials. upon Ar^+ laser irradiation. The colloidal spheres are considered  相似文献   

4.
This paper reports a phase inversion method for the preparation of macroporous polysulfone (PS) composite spheres through a single orifice spinneret. Surfactant F127 was pre-added in the polymer solution as a surface pore-forming agent, and different amount of zeolitic imidazolate framework-8 (ZIF-8) particles were incorporated to form the ZIF-8/polysulfone (ZIF-8/PS)-composite spheres. ZIF-8 and polymer acted as the adsorbent and binder in the final composite spheres, respectively. The fabrication conditions, such as the types of the surfactant, the amount of the surfactant, and ZIF-8 added in the polymer solution, were investigated. Nitrogen and carbon dioxide sorption analysis indicated the ZIF-8/PS composite spheres had similar properties as the pure ZIF-8 particles, and the active sites of ZIF-8 in the polymer composites were well exposed. The composite spheres exhibited advantages of easy handling and recycling over ZIF-8 particles, and this phase inversion method can be extended to prepare other polymer composite spheres.  相似文献   

5.
We report a novel approach to continuous and scalable production of core-shell droplets and polymer capsules in microfluidic devices. The described method is also useful in the synthesis of polymer particles with nonspherical shapes. We used capillary instability-driven break-up of a liquid jet formed by two immiscible fluids. Precise control of emulsification of each liquid allowed for the production of highly monodisperse core-shell droplets with a predetermined diameter of cores and thickness of shells. We also achieved control over the number of cores per droplet and the location of cores in the droplet. We carried out fast throughput photopolymerization of the monomeric shells and obtained polymer particles with various shapes and morphologies, including spheres, truncated spheres and, hemispheres, and single and multicore capsules.  相似文献   

6.
In this work, azobenzene-containing colloidal spheres have been fabricated and used to construct photoresponsive monolayers. The colloidal spheres were prepared from an amphiphilic azobenzene-containing random copolymer through hydrophobic aggregation of the polymer chains, which was induced by adding the selective solvent (H2O) into a THF solution of the polymer. The size and size distribution of the spheres depended on the initial concentration of the azo polymer in THF and the H2O/THF ratio. Adjusting those factors and optimizing other preparation conditions, uniform colloidal spheres could be obtained. Monolayers composed of hexagonally close-packed colloidal spheres were prepared by the capillary-force-driven method. The colloidal monolayers showed obvious dichroism after laser irradiation due to the photoinduced azo-chromophore orientation occurred in the spheres. The orientation order parameter was related to the irradiation time and estimated to be 0.09 at the photostationary state. The colloidal spheres and their monolayers can potentially be used as building blocks or media for reversible optical data storage, photo-switching, sensors, and other photo-driven devices.  相似文献   

7.
A density functional theory based on the weighted density has been developed to investigate the depletion interactions between two colloids immersed in a bath of the binary polymer mixtures, where the colloids are modeled as hard spheres and the polymers as freely jointed tangent hard-sphere chain mixtures. The theoretical calculations for the depletion forces between two colloids induced by the polymer are in good agreement with the computer simulations. The effects of polymer packing fraction, degree of polymerization, polymer/polymer size ratio, colloid/polymer size ratio on the depletion interactions, and colloid-colloid second virial coefficient B2 due to polymer-mediated interactions have been studied. With increasing the polymer packing fraction, the depletion interaction becomes more long ranged and the attractive interaction near the colloid becomes deeper. The effect of degree polymerization shows that the long chain gives a more stable dispersion for colloids rather than the short chain. The strong effective colloid-colloid attraction appears for the large colloid/polymer and polymer/polymer size ratio. The location of maximum repulsion Rmax is found to appear Rmax approximately sigmac+Rg2 for the low polymer packing fraction and this is shifted to smaller separation Rmax approximately sigmac+sigmap2 with increasing the polymer packing fraction, where sigmap2 and Rg2 are the small-particle diameter and the radius of gyration of the polymer with the small-particle diameter, respectively.  相似文献   

8.
In this work, a novel method to fabricate polymer spheres encapsulated in polymer films by breaking embedded electrospun fibers (BEEF) was developed. Polymer fibers were first prepared by electrospinning and embedded in other polymer films using a three‐layer deposition method. After thermal annealing, the electrospun fibers transform into individual spheres with regular spacing and sizes. Poly(methyl methacrylate) (PMMA) and polystyrene (PS) are both used as the fiber or film materials. The transformation process can be observed in‐situ by optical microscope (OM) and is similar to the Plateau–Rayleigh instability. The growth rates of the surface undulation of the fibers are calculated, and higher growth rates are observed at higher annealing temperatures. The sizes of the encapsulated polymer spheres agree well with the theoretical predictions. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2463–2470  相似文献   

9.
阎虎生 《高分子科学》2013,31(2):294-301
Single-hole hollow polymer nanospheres were fabricated by raspberry-like template method using "graft-from" strategy through atom transfer radical polymerization (ATRP). Nanometer-sized silica spheres were covalently attached onto the surfaces of micrometer-sized silica spheres. Crosslinked polymer shells on the nano-sized spheres outside the attached area were formed by "graft-from" strategy through ATRP. After removal of the silica cores, single-hole hollow crosslinked polymer nanospheres were obtained. In this strategy, most of ATRP monomers may be used and thus many functional groups can be easily incorporated into the single-hole hollow crosslinked polymer nanospheres.  相似文献   

10.
A facile method to decorate the polymeric hollow spheres with ZnS nanoparticles has been presented. In this method, the precursors, Zn(Ac)(2)H(2)O and CH(3)CSNH(2), were first adsorbed by the polymer substrate in supercritical CO(2)-ethanol solution at 35 degrees C. Followed by heating the mixture at 100 degrees C for 2 h, ZnS/polymer composites were obtained. The as-produced ZnS/polymer composites were characterized by means of IR spectra, X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy. It was demonstrated that crystalline ZnS nanoparticles with size of 3-5 nm were uniformly decorated on the polymer spheres under suitable conditions. The resultant ZnS/polymer composites exhibited high efficiency for degrading eosin B, methyl orange and methylene blue under UV light irradiation.  相似文献   

11.
Hollow pyrrole-platinumpoly (PPy-Pt) complex spheres effectively catalyze the decomposition of hydrogen peroxide to form oxygen. The method used to synthesize the catalysts employs chemical polymerization of pyrrole with potassium hexachloroplatinate(IV) as oxidant and ZSM-5 molecular sieve as a hard template removable by dissolution. ZSM-5 molecular sieve used as template has the following merits: it can be easily removed, it is inexpensive and owing to micrometer size it shows a minimal aggregation. In addition, the use of the zeolite avoids the need for non-volatile surfactants which may be adsorbed onto the synthesized PPy-Pt complex spheres and interfere with their possible applications in catalysis. The new micron-sized hollow PPy-Pt complex spheres are produced simply and cost-effectively, and they can be expected to play an important role in wastewater treatment technologies. The synthetic method may represent a novel route to prepare hollow conductive polymer spheres doped by various metals for specific applications.  相似文献   

12.
Micron-scale hollow spheres were successfully constructed with silica nanoparticles by templating of polymer spheres. Subsequently, the use of 3-aminopropyltriethoxysilane (APTES) introduces carbon and oxygen defects in the silica nanoparticles resulting from calcination of the aminopropyl group. In this approach, the template of micron-scale polymer spheres was prepared from dispersion polymerization. Subsequent St?ber process results in the formation of a silica layer attached to the polymer sphere surfaces. After calcination, the obtained micron-scale hollow silica spheres were then studied on the relationship between the particle diameter and the surface morphology. The luminescence of hollow spheres was prepared through using APTES in St?ber process, and which of related the appearance of luminescence to the APTES concentration and calcination temperature. The results of this study can provide useful information for the structure of micron-scale hollow spheres and their application to luminescent materials.  相似文献   

13.
Summary: A simple and efficient route to prepare inorganic compound/polymer composites in CO2‐based supercritical solution is presented. By this method, using polymeric hollow spheres as a substrate and Eu(NO3)3 as precursor, Eu2O3/polymer composites are successfully fabricated via the decomposition of the precursor in a supercritical CO2/ethanol mixture at 120 °C. The resulting composites are characterized by means of transmission electron microscopy, X‐ray diffraction, and X‐ray photoelectron spectroscopy. It is indicated that besides being decorated on the outer surface of the polymer spheres, Eu2O3 nanoparticles are imbedded in the shell and further into the hollow cavity of the polymer spheres. The loading content and particle size of Eu2O3 on the polymer spheres can be controlled by changing the concentration of precursor in the solutions. The photoluminescence spectrum of the composites exhibit two peaks at 592 and 615 nm, which indicates that the composites can be used as optical material to emit red light. This method is also extended to the preparation of other inorganic compound/polymer composites with different functions.

Eu2O3 nanoparticles are decorated on the outer surface of the polymer spheres.  相似文献   


14.
Much progress has been made in modeling the reaction of Brownian particles with spherical traps. Previously, work has focused on the effective reaction rate of systems of particles that diffuse freely until they are trapped by spheres in the dispersion. A particularly effective and efficient method to describe the reacting system is based on first-passage time distributions, from which an effective reaction rate coefficient of the suspension can be determined. The analysis presented here addresses reaction and diffusion in systems in which particles can undergo reaction in the continuous phase as well as reaction at the sphere surface. The first-passage method is extended to allow reaction or decay of the diffusing species in the continuous phase. The diffusion path is divided into a series of first-passage regions and is considered the probability of the particle being consumed in each of these regions. This allows the determination of the total reaction rate of the suspension (continuous phase reaction plus trapping) and the relative consumption rate in each phase. The extended method is applied to a model system of concentric spheres with a known continuum solution. It is shown to be accurate for consumption of reactant in the continuous phase from approximately 0 to approximately 100%. The method then is applied to a suspension of spheres.  相似文献   

15.
Uniform CdS colloidal spheres have been successfully synthesized via a simple hydrothermal method.X-ray diffraction(XRD) analyses indicate that the products exhibit a hexagonal structure.Scanning electron(SEM) and transmission electron microscopy (TEM) are used to characterize CdS colloidal spheres.The final size of the spheres may be selected from a range of 71±2 nm to approximately 181±5 nm by changing the amount of polyvinylpyrrolidone(PVP) and hexamethylenetetramine(HMT).The CdS colloidal spheres are not obtained in the absence of either of the capping agents.A synergistic effect between HMT and PVP is proposed to be crucial for the formation of colloidal spheres.  相似文献   

16.
We report the controlled heterocoagulation of platelets and spheres, leading to the formation of colloidally stable, anisotropic hybrid particles. Anionically charged, nanosized polymer latex spherical particles were heterocoagulated on the surface of cationically charged hexagonal gibbsite platelets via the adsorption of a single layer of spheres onto both sides of the hexagonal platelets. The latex particles were annealed at a temperature above the Tg of the latex polymer, resulting in a thin polymer layer covering the gibbsite platelets. This heterocoagulation approach enabled the encapsulation of hydrophilic inorganic particles with polymer latexes and the formation of anisotropic hybrid particles.  相似文献   

17.
CdS/polystyrene nanocomposite hollow spheres with diameters between 240 and 500 nm were synthesized under ambient conditions by a novel microemulsion method in which the polymerization of styrene and the formation of CdS nanoparticles were initiated by gamma-irradiation. The product was characterized by transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA), which show the walls of the hollow spheres are porous and composed of polystyrene containing homogeneously dispersed CdS nanoparticles. The quantum-confined effect of the CdS/polystyrene nanocomposite hollow spheres is confirmed by the ultraviolet-visible (UV-vis) and photoluminescent (PL) spectra. We propose that the walls of these nanocomposite hollow spheres originate from the simultaneous synthesis of polystyrene and CdS nanoparticles at the interface of microemulsion droplets. This novel method is expected to produce various inorganic/polymer nanocomposite hollow spheres with potential applications in the fields of materials science and biotechnology.  相似文献   

18.
We developed a process to fabricate 150-700 nm monodisperse polymer particles with 100-500 nm hollow cores. These hollow particles were fabricated via dispersion polymerization to synthesize a polymer shell around monodisperse SiO(2) particles. The SiO(2) cores were then removed by HF etching to produce monodisperse hollow polymeric particle shells. The hollow core size and the polymer shell thickness, can be easily varied over significant size ranges. These hollow polymeric particles are sufficiently monodisperse that upon centrifugation from ethanol they form well-ordered close-packed colloidal crystals that diffract light. After the surfaces are functionalized with sulfonates, these particles self-assemble into crystalline colloidal arrays in deionized water. This synthetic method can also be used to create monodisperse particles with complex and unusual morphologies. For example, we synthesized hollow particles containing two concentric-independent, spherical polymer shells, and hollow silica particles which contain a central spherical silica core. In addition, these hollow spheres can be used as template microreactors. For example, we were able to fabricate monodisperse polymer spheres containing high concentrations of magnetic nanospheres formed by direct precipitation within the hollow cores.  相似文献   

19.
Hierarchically structured hydrogel hollow spheres with functional hydrogels located at desired sites are expected to have new properties. We have developed a facile swelling polymerization route using a polymer hollow sphere as template to synthesize hierarchically structured hydrogel hollow spheres. It is significant to pre-swell the template shell with good solvents, such as chloroform containing oil-soluble initiators to control interaction, thus, polymerization locus of different water-soluble functional monomers. Some representative hydrogel composite hollow spheres such as poly(N-isopropylarylamide) and poly(acrylic acid) with different morphologies have been synthesized. Hydrogels with functional groups can favorably complex with desired materials; hierarchically structured inorganic or polymer composite hollow spheres are synthesized by a sol–gel process of the inorganic precursor by using different hydrogel composite hollow spheres as templates.  相似文献   

20.
不同形貌ZnSe的制备及光电化学性能   总被引:2,自引:1,他引:1  
采用水热法制备了ZnSe纳米棒和微球, 用XRD, TGA-DTA和SEM等技术对其进行了表征, 提出了解释ZnSe微球的形成新机理. 研究结果表明, 纳米棒直径为50~100 nm, 棒长约为200~300 nm, ZnSe微球直径为3~10 μm.; 纳米棒在反应温度为240 ℃时具有闪锌矿和纤维锌矿型混晶结构, 微球在反应温度为210 ℃时具有闪锌矿结构; 将ZnSe纳米棒和微球均匀地涂在导电玻璃的导电面上, 于380 ℃煅烧40 min后制成膜电极, 并进行了光电化学研究, 纳米棒膜结构电极最高单色光的光电转换效率(IPCE)可达到9.09%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号