首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brownian dynamics simulations for a coarse-grained model have been performed to study the formation of micelles from bile salts and mixed micelles with dipalmitoyl-phosphatidylcholine (DPPC) in aqueous solutions. The particular association behavior of bile salts as facial surfactants was shown to be caused by their special molecular architecture with a hydrophilic and a hydrophobic side. The experimentally observed smooth transition into the micellar region with increasing concentration is reproduced. Micelle size distributions have been evaluated at different bile salt concentrations. Typical structures of pure bile salt micelles could be identified. The composition and the structure of mixed micelles have been studied in their dependence on the bile salt/lipid concentration ratio in the aqueous solution. We have found that the bile salt fraction in the mixed micelles increases considerably with increasing bile salt/lipid concentration ratio and decreasing micelle size. The structural and thermodynamic features of micelle formation in the aqueous bile salt solutions with DPPC, which we have studied with the coarse-grained model, are in good qualitative agreement with experimental findings.  相似文献   

2.
A spherical micelle structure has been studied for cationic (n-dodecyltrimethylammonium chloride) and nonionic (hexaethylene glycol mono-n-hexyl ether) surfactants in pure water and a sodium chloride solution. The molecular-dynamics has been used to simulate the self-assembly of aggregates from an initially homogeneous mixture of water and surfactant molecules and to gain insight into the structure of micelles and their surface layers. The radial distribution functions obtained for charged components have been employed to calculate the local electric potentials of the micelles and the contributions from the charges of water atoms, ions, and a surfactant to it. It has been shown that, similarly to previously studied ionic micelles, in nonionic surfactant micelles, the contributions from water molecules and polar groups (and ions in the case of the salt solution) to the electric potential are mutually compensated in the region of the electrical double layer. Therefore, the resultant electric potential of the surface layer rapidly tends to zero.  相似文献   

3.
The solubilization of ionic (sodium naphthalene-2,6-disulfonate) and nonionic (diethyl 2,5-dihydroxyterephthalate) organic luminophores in water–isooctane–NaАОТ (sodium 1,4-bis[(2-ethylhexyl) oxy]-1,4-dioxybutane-2-sulfonate) reverse micelles is simulated by the molecular dynamics method. In a stationary state, the localization of luminophore molecules in a micelle appears to be the same irrespective of their initial positions in the system. The position and orientation of solubilized luminophores relative to a reverse micelle depend on the hydrophobicity and the capability for dissociation of the functional groups of their molecules, the size of the reverse micelle, and the structure of its electrical double layer.  相似文献   

4.
The partition coefficients for the distribution of bilirubin between aqueous phosphateborate buffer and cholic, taurocholic, taurodeoxycholic, and taurochenodeoxycholic micelles have been measured by micellar electrokinetic chromatography at pH 8.5. Determination of the partition coefficients required that the critical micelle concentration and partial specific volumes be determined for each bile salt. Critical micelle concentrations were slightly higher for the trihydroxy bile salts. Partial specific volumes of the bile salt micelles differed very little from each other, and for each bile salt they were constant over the concentration range studied, which was typically from slightly above the critical micelle concentration to 35 mM. Capacity factors were corrected for the effects of applied voltage by extrapolation of the capacity factor to zero applied volts. The free solution mobility of bilirubin, determined in the absence of bile salt, was also corrected for the effects of applied voltage. Plots of extrapolated capacity factor versus phase ratio yield the partition coefficient as the slope of a linear fit to the data. Partition coefficients for bilirubin were significantly higher for dihydroxy bile salts than for trihydroxy bile salts.  相似文献   

5.
We report measurements of self aggregation in aqueous solution of an ionic liquid (IL), didecyl-dimethylammonium nitrate ([DDA][NO(3)]) and a surfactant hexadecyl-trimethylammonium bromide (CTAB) and of mixtures of these two salts. The electrical conductivity and dynamic light scattering (DLS) measurements were used for the characterization of the aggregation process. The conductivity measurements were performed at three temperatures. The critical micelle concentration (CMC) was determined at different temperatures and at different ratio of two salts. The effect of IL on the micellization of CTAB has been discussed. Our results suggest that organized structures formed by CTAB and [DDA][NO(3)] self assembly in domains of several hundred nanometers size. The micellar solubility of the salicylic acid in mixed salt aqueous solutions was determined to probe the physical properties of these assemblies. We have observed, that the micellar solubility enhancement was only slightly influenced by the nature of micelles present in aqueous solution. This proves that salicylic acid solubilization is enthalpy driven.  相似文献   

6.
(1)H NMR spectroscopy was used to investigate the aggregation of the surfactant di-isobutyl-phenoxy-ethoxy-ethyl-dimethyl-benzyl ammonium methacrylate (Hyamine-M) in benzene. Adding water makes swollen reverse micelles (microemulsion droplets). The droplets also contain cadmium ions and the sodium salt of the methacrylic acid. The critical micelle concentration of Hyamine-M was determined by NMR to be 3.95 mM under the current conditions. Two-dimensional NMR NOESY spectra were used to study the conformation of the surfactant in the micelle and the spatial localization of water and counterions. We found that the surfactant molecules are folded with both phenyl fragments oriented toward the micelle exterior and the oxyethylene and NCH(3) groups in the micelle core. The water molecules and counterions are distributed around the surfactant polar groups in the micelle interior and penetrate up to both aromatic rings. The investigated system can be further utilized as a microemulsion matrix for the synthesis of cadmium-containing semiconductor nanocrystals, eventually capped with a polymer shell, or of polymer nanoparticles.  相似文献   

7.
Sodium bis(2-ethylhexyl)sulfosuccinate (AOT) is a surfactant commonly used to encapsulate water soluble proteins within the aqueous core of a reverse micelle. In the context of high-resolution NMR studies of encapsulated proteins the size of the resulting reverse micelle is critically important. We have designed and synthesized a short AOT analogue, 3,3-dimethyl-1-butylsulfosuccinate sodium salt and determined that it is able to form reverse micelles and to encapsulate the protein ubiquitin with high structural fidelity. AOT is often found to significantly destabilize encapsulated proteins, largely through charge-charge interactions between the anionic headgroup and the surface of the protein. Here we demonstrate, for the first time, that proportional mixtures of anionic and cationic surfactants can form reverse micelles that are also capable of protein encapsulation with high fidelity.  相似文献   

8.
The influence of salt, temperature, and deuterium oxide on the self-aggregation of n-nonyl-beta-D-glucoside (beta-C9G1) in dilute solution has been investigated by static and dynamic light scattering, neutron scattering, and tensiometry. Scattering data show that the micelles can be described as relatively stiff, elongated structures with a circular cross section. With a decrease of temperature, the micelles grow in one dimension, which makes it surprising that the critical micelle concentration (cmc) shows a concomitant increase. On the other hand, substitution of D2O for H2O causes a large increase in micelle size at low temperatures, without any appreciable effect on cmc. With increasing temperature, the deuterium effect on the micelle size diminishes. The effects of salt on the micelle size and cmc were found to follow the Hofmeister series. Thus, at constant salt concentration, the micelle size decreased according to the sequence SO4(2-) > Cl- > Br- > NO3- > I- > SCN-, whereas the effect on cmc displays the opposite trend. Here, I- and SCN are salting-in anions. Similarly, the effects of cations decrease with increasing polarizability in the sequence Li+ > Na+ > K+ > Cs+. At high ionic strength, the systems separate into two micellar phases. The results imply that the size of beta-C9G1 micelles is extremely sensitive to changes in the headgroup size. More specifically, temperature and salt effects on effective headgroup size, including intermolecular interactions and water ofhydration, are suggested to be more decisive for the micelle morphology than the corresponding effects on unimer solubility.  相似文献   

9.
The effect of divalent and trivalent salts (CaCl(2), CaBr(2), MgCl(2), MgBr(2), LaCl(3), CeCl(3), La(NO(3))(3), and Ce(NO(3))(3)) on the micelle formation in C(8)-lecithin solutions was investigated using the techniques of static and dynamic light scattering. The critical micelle concentration (cmc), mean hydrodynamic radius (R(h)), gyration radius (R(g)), and weight-average molecular weight of the micelles were measured as functions of salt identity and concentration, amphiphile concentration, and temperature. It was found that the micelles in solutions of magnesium are less likely to form and less stable; their standard enthalpy is less exothermic as the ionic strength increases. On the contrary, the micelles in solutions of calcium and trivalent salts form easily, and are more stable; their standard enthalpy is also more exothermic as the ionic strength increases. Based on our model of the Gibb's free energy for the salt-added solutions, we obtained the following formula for the effect of salts on cmc: ln(cmc)'=ln(cmc)+k(1) I(1/2)+k(2)I, where (cmc)' and (cmc) are the critical micelle concentrations in salt-added and salt-free solutions, respectively, I is the ionic strength, and k(1) and k(2) are the salt effect parameters. The agreement between the formula and the experimental data for all the systems under study shows that the formula is more satisfactory than those suggested previously by other authors in describing the effect of salts on the cmc in the micellar solutions of not only zwitterionic but also nonionic surfactants. Copyright 2001 Academic Press.  相似文献   

10.
Micellization behavior of amphiphilic diblock copolymers with strong acid groups, poly(hydrogenated isoprene)-block-poly(styrenesulfonate), was investigated by small-angle neutron scattering (SANS). We have reported previously (Kaewsaiha, P.; Matsumoto, K.; Matsuoka, H. Langmuir 2005, 21, 9938) that this strongly ionic amphiphilic diblock copolymer shows almost no surface activity but forms micelles in water. In this study, the size, shape, and internal structures of the micelles formed by these unique copolymers in aqueous solution were duly investigated. The SANS data were well described by the theoretical form factor of a core-shell model and the Pedersen core-corona model. The micellar shape strongly depends on the hydrophobic chain length of the block copolymer. The polymer with the shortest hydrophobic chain was suggested to form spherical micelles, whereas the scattering curves of the longer hydrophobic chain polymers showed a q-1 dependence, reflecting the formation of rodlike micelles. Furthermore, the addition of salt at high concentration also induced the sphere-to-rod transition in micellar shape as a result of the shielding effect of electrostatic repulsion. The corona thickness was almost constant up to the critical salt concentration (around 0.2 M) and then decreased with further increases in salt concentration, which is in qualitatively agreement with existing theories. The spherical/rodlike micelle ratio was also constant up to the critical salt concentration and then decreased. The micelle size and shape of this unique polymer could be described by the common concept of the packing parameter, but the anomalously stable nature of the micelle (up to 1 M NaCl) is a special characteristic.  相似文献   

11.
12.
The sizes of nonionic reverse micelles were investigated as a function of the molecular structure of the surfactant, the type of oil, the total concentration of surfactant [NP], the ratio of surfactant to total surfactant (r), the water to surfactant molar ratio (omega), temperature, salt concentration, and polar phase. The basis of our investigation was a mixture of nonylphenol polyethoxylates--NP4 and NP7, various polar phases, and several oils. Micelle sizes were determined using dynamic light scattering (DLS). A central composite experimental design was used to quantitatively model micelle size as a function of omega, surfactant concentration, and r. The model has demonstrated the capability of predicting the mean diameter of micelles from 4 to 13 with a precision of +/-2 nm as measured by DLS. This quantitative correlation between the size of reverse micelles and the synthetic variables provides the foundation for choosing experimental conditions to control reverse micelle size. In turn, this allows control of the size of nanoparticles synthesized within them.  相似文献   

13.
Mechanisms of the formation and stabilization of gold nanoparticles in reverse micelles of micro-emulsions based on Triton X-100 (TX-100) and Aerosol OT (AOT) are studied. The instability of AOT-based microemulsions is shown to be caused by the oxidative degradation of gold nanoparticles in micelle water pools. Methods are proposed for the stabilization of these microemulsions. It is revealed that the mean size of gold nanoparticles synthesized in TX-100 reverse micelles in the presence of sodium sulfite is markedly smaller than that of particles prepared in AOT reverse micelles. This is explained by the fact that gold clusters are formed in the micelle shell rather than in the water pool. In the shell, the clusters are stabilized by oxyethylene groups of TX-100 molecules.__________Translated from Kolloidnyi Zhurnal, Vol. 67, No. 4, 2005, pp. 534–540.Original Russian Text Copyright © 2005 by Spirin, Brichkin, Razumov.  相似文献   

14.
The aggregation behaviour of two ethylene oxide-propylene oxide block copolymers (PEO-PPO-PEO) in aqueous solution has been investigated in the presence of added salts (KCNS, KI, KBr, KCl and KF) by viscosity, cloud point, light scattering, pulse gradient spin echo NMR, and solubilization measurements. The salts have a strong effect on the cloud points of the pluronics. Both P-85 and L-64 form micelles which increase in size and change into elongated shapes when the cloud point is approached. The changes of size and shape of the micelles, revealed by the intrinsic viscosity and rheological properties, seem to occur at the same temperature relative to the cloud point, independent of the nature of the salt. The onset of micelle formation is also shifted in the same direction as the cloud point by the salts, but by a much smaller amount.  相似文献   

15.
The distribution and dynamics of alkali cations inside Na-AOT reverse micelles have been investigated using Monte Carlo and molecular dynamics simulations. Water is modeled using the extended simple point charge (SPC/E) model. Simulations were carried out for alkali salts of Li+, Na+, K+, and Cs+ placed into the aqueous core of the reverse micelle, for situations corresponding to one and three molecules of added salt. In all cases, we observe that the larger K+ and Cs+ ions exchange with the Na+ counterion; however, the smaller Li+ ion prefers to remains solvated within the core of the reverse micelle. Our study reveals that the oil-water interface of the Na-AOT reverse micelle has the greatest selectivity toward Cs+ followed by K+ and Li+. A model based on enthalpic contributions illustrates that the solvation energies of the different cations in water control the ion-exchange process. The hydration number of the first water shell for Li+ situated in the aqueous core of the reverse micelle with radius R = 14.1 A was similar to that observed at infinite dilution in bulk water.  相似文献   

16.
The micellization of PEO-PPO-PEO block copolymers in p-xylene has been studied in the presence of CO2. With the application of CO2, some copolymers with suitable molecular weights and EO ratios can form reverse micelles with critical micellization pressure up to 5.8 MPa. For the copolymers with the same length of PO block, higher EO ratios facilitate reverse micelle formation. For the copolymers with the same composition, higher molecular weight is favorable to form reverse micelles. With the suitable composition and molecular weight, the critical micelle pressure (CMP) of copolymers decreases with the increase in the lengths of PEO and PPO blocks due to the hydrophilic and folding effects, respectively. Both the EO ratios and the molecular weights are important for the formation of reverse micelle. The reverse micelle solution can solubilize water with W0 (molar ratio of water to EO segment) up to 3.3.  相似文献   

17.
Lecithin is a very useful biosurfactant. In this work, the effects of compressed CO 2 on the critical micelle concentration (cmc) of lecithin in cyclohexane and solubilization of water, lysozyme, and PdCl 2 in the lecithin reverse micelles were studied. The micropolarity and pH value of the polar cores of the reverse micelles with and without CO 2 were also investigated. It was found that CO 2 could reduce the cmc of the micellar solution and enhance the capacity of the reverse micelles to solubilize water, the biomolecule, and the inorganic salt significantly. Moreover, the water pools could not be formed in the reverse micelles in the absence of CO 2 because of the limited amount of water solubilized. However, the water pools could be formed in the presence of CO 2 because large amounts of water could be solubilized. All of these provide more opportunity for effective utilization of this green surfactant. The possible mechanism for tuning the properties of the reverse micelles by CO 2 is discussed.  相似文献   

18.
The structure of the electrical double layer (EDL) of micelles in dilute micellar solutions in the presence of a background electrolyte is studied within the framework of the Gouy-Chapman-Stern theory. On the basis of the Stern isotherm for counterion adsorption, conditions of electroneutrality, and the Gauss condition at the interface between the diffuse and dense parts of EDL, three equations are derived for the electrostatic potentials of the surface of micelle cores and the diffuse part of EDL as well as for the potential of the specific adsorption of counterions. Model parameters are verified by the example of sodium dodecyl sulfate (SDS). Potentials of the diffuse part of EDL, the degree of binding of counterions with micelles, and the specific adsorption potential are calculated from the experimental data on the potential of the surface of SDS micelle cores and their sizes, critical micellization concentration, aggregation numbers, and the constants of premicellar association. The specific adsorption potential of SDS is found to be ?(4.6 ± 0.1)?, where ? is the product of Boltzmann’s constant and absolute temperature. The specific adsorption potential is independent of the background electrolyte concentration, remains constant within the determination error of the parameters, and substantially contributes to the formation of EDL of micelles.  相似文献   

19.
在助表面活性剂正己醇存在下, 季铵盐Gemini表面活性剂C12-EOx-C12•2Br(x=1, 2, 3)在正庚烷中形成了反胶团. 以碘光谱法测定了临界反胶团浓度(cmch), 该值小于它们在水中形成正胶团时的临界浓度(cmcaq), 但两者随x的变化规律一致, 均呈单调增长. 反胶团饱和增溶水量随x增加或温度升高而增大.  相似文献   

20.
We report a new route for forming reverse wormlike micelles (i.e., long, flexible micellar chains) in nonpolar organic liquids such as cyclohexane and n-decane. This route involves the addition of a bile salt (e.g., sodium deoxycholate) in trace amounts to solutions of the phospholipid lecithin. Previous recipes for reverse wormlike micelles have usually required the addition of water to induce reverse micellar growth; here, we show that bile salts, due to their unique "facially amphiphilic" structure, can play a role analogous to that of water and promote the longitudinal aggregation of lecithin molecules into reverse micellar chains. The formation of transient entangled networks of these reverse micelles transforms low-viscosity lecithin organosols into strongly viscoelastic fluids. The zero-shear viscosity increases by more than 5 orders of magnitude, and it is the molar ratio of bile salt to lecithin that controls the viscosity enhancement. The growth of reverse wormlike micelles is also confirmed by small-angle neutron scattering (SANS) experiments on these fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号