首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary The structures, textures as well as thermodynamic properties of a side chain polymer exhibiting a liquid crystalline phase in addition to a partially crystalline state and the isotropic fluid state were investigated. Furthermore the kinetics of phase transitions between these states were analyzed. It was found that the properties of this polymer are intermediate between that of low molecular weight liquid crystals and common polymers. In particular it was observed that the relation between the liquid crystalline texture and the structure is different from that of low molecular weight liquid crystals and that the properties of the crystalline and liquid crystalline state depend strongly on the tacticity of the polymer.
Zusammenfassung Für ein Seitenkettenpolymeres, das zusätzlich zum teilkristallinen Zustand und zur isotropen Schmelze einen flüssig-kristallinen Zustand aufweist, wurden die Strukturen und Texturen untersucht sowie thermodynamische Eigenschaften. Außerdem wurde die Kinetik der Phasenumwandlungen analysiert. Es zeigt sich, daß die Eigenschaften zwischen denen üblicher Polymerer und denen von niedrigmolekularen flüssigen Kristallen liegen. Insbesondere zeigte sich, daß die Beziehung zwischen molekularer Struktur und Textur von der bei niedrigmolekularen flüssigen Kristallen abweicht, und daß die Taktizität der Kette einen starken Einfluß auf die Eigenschaften nicht nur der kristallinen Phase sondern auch der flüssig-kristallinen Phase ausübt.
  相似文献   

3.
Methods for the preparation of composite ion-exchange membranes from polymer (polyvinylidene fluoride (PVDF), ultrahigh molecular weight polyethylene (UHMWPE), and polypropylene (PP)) matrices were considered. Polystyrene (PS) was introduced in the matrices by thermal polymerization of the monomer followed by sulfonation of the implant. The fundamentals of membrane synthesis from industrial polytetrafluoroethylene (PTFE, Teflon F-4) films by thermal polymerization of styrene in a film stretched in a monomer solution followed by sulfonation of incorporated PS were described. The literature on radiation- chemical synthesis of composite ion-exchange membranes based on polymer matrices with embedded polystyrene and its subsequent sulfonation was analyzed. Some problems of the kinetics and mechanism of thermal implantation of PS into various polymer matrices under different conditions were discussed. The physicochemical characteristics, structure, and transport properties of the membranes synthesized by thermal implantation of PS were reported. The obtained membranes were tested in low-temperature fuel cells.  相似文献   

4.
The interaction between the uranyl cation, (UO2)2+, and organic species is of interest due to the potential applications of the resulting compounds with regard to nuclear waste disposal and nuclear fuel reprocessing. The hydrothermal reaction of various uranyl compounds with flexible zwitterionic 1,1′‐[1,4‐phenylenebis(methylene)]bis(pyridin‐1‐ium‐4‐carboxylate) dihydrochloride (Bpmb·2HCl) in deionized water containing drops of H2SO4 resulted in the formation of a novel two‐dimensional uranyl coordination polymer, namely poly[tetraoxido{μ2‐1,1′‐[1,4‐phenylenebis(methylene)]bis(pyridin‐1‐ium‐4‐carboxylate)}di‐μ3‐sulfato‐diuranium(VI)], [(UO2)2(SO4)2(C20H16N2O4)]n, (1). Single‐crystal X‐ray diffraction reveals that this coordination polymer exhibits a layered arrangement and the (UO2)2+ centre is coordinated by five equatorial O atoms. The structure was further characterized by FT–IR spectroscopy, powder X‐ray diffraction (PXRD) and thermogravimetric analysis (TGA). The polymer shows high thermal stability up to 696 K. Furthermore, the photoluminescence properties of (1) has also been studied, showing it to exhibit a typical uranyl fluorescence.  相似文献   

5.
The importance of the cooling rate for the structural transformations in a main-chain poly(hexamethylene-4,4′-bibenzoate) has been presented. Detailed analysis of the phase transitions, main structural parameters and their temperature changes has been performed by differential scanning calorimetry, real-time middle-angle X-ray scattering and wide-angle X-ray diffraction methods. The thermodynamic nature of the initial transformation into a smectic A phase has been discussed. The material in the smectic state is supposed to be organized in smectic domains. The crystallization from the smectic phase depends strongly on the kinetics. The crystallization inside the smectic domains results into different final structures determined by the cooling rate applied. At the highest cooling rates, only one crystalline form has been observed. Different possible modifications have been discussed for the case: either a γ-polymorphic form or still some mesophase of high order, as a frozen metastable state. There is a possibility that the phase might be also identified as a condis crystal. At decreasing cooling rates, a new crystalline form, named α∗, appears together with the first one. Lowering the cooling rate, the volume fraction of the α∗-polymorph gradually increases, at the expenses of the first form. The interesting feature of the new observed α∗-polymorph is that it has some similarities with α- and δ-phases of the same material. Contrary to the previous observations, no γ?α transformation has been observed neither during the course of single crystallization nor during the subsequent heating. A model describing the gradual transformation of the material during its temperature treatment has been proposed.  相似文献   

6.
The coupling and the competition of two phase transitions (demixing and crystallization) and the coupling of both demixing and vitrification are investigated during phase transformations under far-from-equilibrium conditions. The coupling leads to formation of the different non-equilibrium morphologies and to kinetic pecularities of phase transformations.  相似文献   

7.
A new flexible porous coordination polymer (PCP), {[Gd(2)(L)(3)(dmf)(4)]·4DMF·3H(2)O}(n) (1), was synthesized under solvothermal condition by reacting [Gd(NO(3))(3)]·6H(2)O with the ligand 2,6,2',6'-tetranitro-biphenyl-4,4'-dicarboxylic acid (H(2)L). Compound 1 had a 3D coordination polymeric structure with two types of 1D channels (A and B) that were occupied by DMF and water molecules. When crystals of 1 were separately exposed to vapors of various aromatic aldehydes, either the lattice or both the lattice and metal-bound solvent molecules were replaced by aldehyde molecules. The aldehyde molecules inside the pores spontaneously underwent cyanosilylation and Knoevenagel condensation reactions upon exposure to vapors of trimethylsilyl cyanide and malononitrile, respectively. These reactions took place at ambient temperature and pressure. Moreover, both the reactants and the products translocated from one cavity to another. The products that occupied the cavity were expunged upon exposure to the vapors of an aldehyde. Because crystallinity was maintained during these chemical transformations, direct crystallographic observation was possible. Herein, we showed that confinement of the reactants inside the void spaces of the PCP led to the products; we also assessed catalytic activities of this PCP in bulk quantities.  相似文献   

8.
Melanophlogite, a low-pressure silica polymorph, has been extensively studied at different temperatures and pressures by molecular dynamics simulations. While the high-temperature form is confirmed as cubic, the low-temperature phase is found to be slightly distorted, in agreement with experiments. With increasing pressure, the crystalline character is gradually lost. At 8 GPa, the radial distribution function is consistent with an amorphous state. Like pristine glass, the topology changes, plastic behavior, and permanent densification appear above ~12 GPa, triggered by Si coordination number changes. We predict that a partial crystalline and amorphous sample can be obtained by recovering the sample from a pressure of ~12-16 GPa.  相似文献   

9.
For the first time directly measured elastic tensor components of C36H74 single crystals are presented as a function of temperature. The data are compared to theoretical results obtained for polyethylene.  相似文献   

10.
Thermally robust materials of the M(5-X-pyrimidin-2-olate)2 type [M = Co, X = Cl (1(Cl)), X = Br (1(Br)), X = I (1(I)); M = Zn, X = Cl (2(Cl)), X = Br (2(Br)), X = I (2(I))] have been synthesized. Their X-ray powder diffraction structural characterization has revealed that they crystallize as I2d diamondoid frameworks, isomorphous to those of the pristine [M(pyrimidin-2-olate)2]n analogues (1(H), M = Co; 2(H), M = Zn). The magnetic measurements of the 1(X) series at magnetic fields of 100, 300, and 5000 Oe reveal a weak ferromagnetic ordering taking place below the Néel temperature (T(N) approximately 20 K), arising from spin canting phenomena of the antiferromagnetically coupled cobalt centers. Moreover, magnetic hysteresis studies carried out on the 1(X) series at 2 K reveal a strong dependence of both the coercive field H(coer) (2500, 1000, 775, and 500 Oe for 1(Br), 1(Cl), 1(I), and 1(H), respectively) and the remnant magnetization M(rem) (0.0501 mu(B) for 1(Br) and 1(Cl), 0.0457 mu(B) for 1(I), and 0.0358 mu(B) for 1(H)) on the 5-substituent of the pyrimidin-2-olates. The molecular alloys [Co(5-Y-pyrimidin-2-olate)2] (Y = Cl/Br, 1(Cl/Br)) and [Co(5-Y'-pyrimidin-2-olate)2] (Y' = Br/I, 1(Br/I)) have also been prepared and characterized, proving that they have intermediate properties. These materials combine interesting functional properties, such as chemical inertness, magnetism, photoluminescence, and (although weak) SHG activity.  相似文献   

11.
12.
A new 2D cadmium(II) coordination polymer {[Cd(MBD)(L)]·(H2O)2} n (1) (H2MBD = 5-methoxycarbonyl-benzene-1,3-dicarboxylic acid, L = 1,3-bis(benzimidazol-l-yl)-2-propanol) is synthesized, in which the starting linker (benzene-1,3,5-tricarboxylic acid) undergoes selective monoesterification during the synthesis. In the structure of complex 1, each cadmium center is octahedrally coordinated by four O atoms from three carboxylate groups and two N of distinct L ligands. A detailed structural analysis reveales that compound 1 exhibits a unique 2D binodal (3,5)-connected (42.67.8)(42.6) topology structure. Furthermore, the 2D layer is extended into a 3D network through π-π stacking interactions. The solid-state fluorescence properties of 1 are investigated at room temperature.  相似文献   

13.
This feature article provides, for the first time, an overview of the research that guided the way from fundamental studies of the thermo-responsive phase separation of aqueous polymer solutions to polymeric sensor systems. The incorporation of solvatochromic dyes into thermoresponsive polymers as well as the concepts of polymeric sensors are presented and discussed in detail.  相似文献   

14.
The effect of the magnetic field on the phase diagrams of flexible-chain polymer–solvent systems is observed for the first time. Phase transitions in systems with the crystalline-phase separation (PE–o-xylene, PE–n-hexane, PE–chloroform, PE–o-dichlorobenzene, PEG–1,4-dioxane, PEG–toluene) and the amorphous demixing (PS–methyl acetate, PVA–ethanol, PDMS–butanone) are studied. The magnetic field increases the temperatures of crystallization of PE and PEG from solutions and melts but has no effect on phase transitions in PS, PVA, and PDMS solutions. The structures of polymer entities isolated from solutions and melts are studied. Under application of the magnetic field to PEG solutions, spherulites of substantially smaller sizes than those formed outside the field appear. The magnetic field increases the degree of crystallinity of PEG, but the degree of crystallinity and size of PE spherulites remain unchanged.  相似文献   

15.
A ternary coordination polymer, [Cd(L)(pbda)0.5] n [HL?=?3,5-bis(2-pyridylmethyl)aminobenzoic acid, pbda?=?dianion of 1,4-benzenedicarboxylic acid], has been synthesized and characterized by elemental analysis, FT-IR spectroscopy, powder X-ray diffraction, thermogravimetric analysis, and single-crystal X-ray diffraction analysis. The single-crystal X-ray crystallography reveals that the complex is a 2-D wave-like network. The cadmium has an unsymmetrical seven-coordinate [CdN2O5] geometry, coordinated by two nitrogens and five oxygens from L? and pbda. Hydrogen bonds between the uncoordinated (2-pyridylmethyl)amino groups from adjacent layers form dimers across the inversion center, superposing different layers to construct a 3-D framework. To the best of our knowledge, [Cd(L)(pbda)0.5] n represents the first example of a complex containing 3,5-bis(2-pyridylmethyl)aminobenzoate.  相似文献   

16.
17.
Two novel smectic bilayer structures have been identified in an enantiomerically enriched chiral side chain polymer containing the highly dipolar nitrile group at stereocentres. The structures were characterized by electron diffraction, electron microscopy, and X-ray diffraction. In both phases each smectic layer has a bilayer structure with backbones and spacers confined in a thin disordered region between two sublayers of mesogenic segments. One of the structures which we denote as CrE* has the unusual feature of having its side chains arranged parallel to the layer normal in spite of its enantiomeric bias and twisted nature. In the second structure side chains are tilted by 34.8° with respect to the layer normal and we denote this phase as CrH*c In both structures each sublayer contains three different orientations of orthorhombic (CrE) or monoclinic (CrH*c) lattices which are related to one another by rotations of ± 60° about the c-axis. In both the CrH*c and the CrE* phases, lattices in each sublayer are regularly rotated about the c-axis by 5.9° relative to those in the adjacent sublayer. The observation of a chiral CrH phase is uncommon and in this specific case the structure is unique since the rotation between adjacent layers occurs about the sidechain axis (c-axis) (CrH*c) and not about the layer normal (c-axis) (CrH*c). We believe the system undergoes a change in molecular organization from CrH*c to CrE* as a result of a chemical reaction which joins a fraction of the stereocentres through covalent bonds. With increasing temperature the CrE* structure was found to transform to a special orthorhombic untwisted smectic phase in which a = 31/2b, denoted here as CrEh. The structure then transforms to a hexatic SB phase and finally to a SA phase at yet higher temperatures.  相似文献   

18.
A robust and water-stable porous coordination polymer [Cd(NDC)(0.5)(PCA)]·G(x) (1) (H(2)NDC = 2,6-napthalenedicarboxylic acid, HPCA = 4-pyridinecarboxylic acid, G = guest molecules) with new network topology has been synthesized solvothermally. The framework is 3D porous material and forms a 1D channel along the c-axis, with the channel dimensions ~9.48 × 7.83 ?(2). The compound has high selectivity in uptake of CO(2) over other gases (H(2), O(2), Ar, N(2), and CH(4)). The framework is highly stable in presence of water vapor even at 60 °C. The high CO(2) selectivity over other gases and water stability makes the compound promising candidate for industrial postcombustion gas separation application.  相似文献   

19.
A new carboxylato-bridged CoII network of formula {Co((kappa1-kappa1)-(kappa1-mu2)-mu4-TDC)(mu2-H2O)0.5(H2O)}n (H2TDC=2,5-thiophenedicarboxylic acid) has been hydrothermally synthesized and characterized by single-crystal X-ray diffraction, thermogravimetric analysis, and IR and UV-visible spectroscopies. The title compound is made of chains of CoII dimers interconnected by TDC2- ligands, showing an unprecedented asymmetric tetradentate coordination mode of the carboxylate functions. Magnetic measurements show weak ferromagnetic interactions between the Co ions within the dimers.  相似文献   

20.
The structural and thermodynamic properties of tethered polymer layers formed by spreading diblock copolymers at a solid surface or at a fluid‐fluid interface are studied using a molecular mean‐field theory. The role of the anchoring block in determining the properties of the tethered polymer layer is studied in detail. It is found that both the anchoring and the tethered blocks are very important in determining the phase behavior of the polymer layer. The structures of the coexisting phases, the phase boundaries and the stability of the layer are found to depend on the ratio of molecular weight between the two blocks, the polymer‐interface (surface) interactions and the strength of the interactions between the two blocks. The different phase transitions found are related to experimental observations. The properties of the polymer layers at coexistence reflect the block that is the dominant driving force for phase separation. The ability of the tethered polymer layers, under different conditions, to control protein adsorption to surfaces is also studied. It is found that the most important factors determining the ability of a polymer layer to reduce the equilibrium amount of proteins adsorbed to a surface are the surface coverage of polymer and the surface‐polymer interactions. The polymer chain length plays only a secondary role. For the kinetic control, however, it is found that the potential of mean‐force, and thus the early stages of adsorption, depends strongly on polymer molecular weight. Further, it is found that the molecular factors determining the ability of the tethered polymer layer to reduce the equilibrium amount of protein adsorption are different than those that control the kinetic behavior. Comparisons with experimental observations are presented. The predictions of the theory are in very good agreement with the measured adsorption isotherms. Guidelines for building optimal surface protection for protein adsorption, both kinetic and thermodynamic, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号