首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CCSD(T) state-of-the-art ab initio calculations are used to determine a vibrationally corrected three-dimensional potential energy surface of dimethyl-ether depending on the two methyl torsions and the COC bending angle. The surface is employed to obtain variationally the lowest vibrational energies that can be populated at very low temperatures. The interactions between the bending and the torsional coordinates are responsible for the displacements of the torsional overtone bands and several combination bands. The effect of these interactions on the potential parameters is analyzed. Second order perturbation theory is used as a help for the understanding of many spectroscopic parameters and to obtain anharmonic fundamentals for the 3N - 9 neglected modes as well as the rotational parameters. To evaluate the surface accuracy and to verify previous assignments, the calculated vibrational levels are compared with experimental data corresponding to the most abundant isotopologue. The surface has been empirically adjusted for understanding the origin of small divergences between ab initio calculations and experimental data. Our calculations confirm previous assignments and show the importance of including the COC bending degree of freedom for computing with a higher accuracy the excited torsional term values through the Fermi interaction. Besides, this work shows a possible lack of accuracy of some available experimental transition frequencies and proposes a new assignment for a transition line. As an example, the transition 100 → 120 has been computed at 445.93 cm(-1), which is consistent with the observed transition frequency in the Raman spectrum at 450.5 cm(-1).  相似文献   

2.
Conclusions A conformational equilibrium has been observed in (CH3)2CClNO, and it has been shown that the cisCl and trans conformers are present in solutions and in the gas phase, the more stable conformer being the cisCl. In n-C6H14, the energy difference amounts to 1.22 kcal/mole.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 7, pp. 1538–1544, July, 1989.  相似文献   

3.
Quantum chemical study on TiF3 and VF3 molecules was carried out using the CCSD(T) coupled cluster method using the triple-, quadruple-, and quintuple-zeta basis set and an extrapolation to the complete basis set limit. The methods of multireference configuration interaction MRCISD+Q and perturbation theory MCQDPT2 were used also. The symmetry of the ground electronic state was determined: 2 A1 and 3 E″ in TiF3 and VF3, respectively. The adiabatic excitation energies were evaluated: AEE(TiF3, $\tilde A^2 E'' \leftarrow \tilde X^2 A'_1 $ ) = 5000 cm?1, AEE(VF3, $\tilde A^3 A'_2 \leftarrow \tilde X^3 E''$ ) = 1000 cm?1. The Jahn-Teller effect in $\tilde A^2 E''$ state of TiF3 and $\tilde X^3 E''$ state of VF3 was investigated. The computed Jahn-Teller stabilization energy D 3h C 2v amounts to 555 and 292 cm?1, respectively. The spin-orbit coupling effect on the VF3 molecular structure and spectrum of electronic states is shown to be quite significant. The calculated vibrational frequencies of TiF3 are in excellent agreement with IR spectroscopy data. The atomization enthalpies were evaluated: Δat H 298 pO = 430 kcal/mol (TiF3), 393 kcal/mol (VF3).  相似文献   

4.
Infrared gas phase spectra of CH3GeH3 and CD3GeH3 have been investigated at a resolution of 0.06 cm−1 and Raman spectra obtained in the liquid phase at low resolution. Several reassignments of the fundamental frequencies are proposed. Q-branch maxima from the five naturally occurring Ge isotopes have been resolved in several of the fundamental vibrations and new values obtained of rotational and Coriolis coupling constants for ν7, ν8, ν10 and ν12 of CH3GeH3 and ν7, ν8, ν9, ν10 and ν12 of CD3GeH3. Germanium isotopic frequency shifts on νGeC are also reported.  相似文献   

5.
The i.r. spectra (20–3500 cm−1 of gaseous and solid (CH3)3SiN3, (CH3)3SiNCO and (CH3)3SiNCS have been recorded. The Raman spectra (25–3100 cm−1) of these three compounds in the gaseous (except (CH3)3SiNCS), liquid and solid states have also been recorded. A vibrational assignment is proposed for each molecule. The spectral data for the heavy atom vibrations are consistent with C3v symmetry for the isocyanate and the isothiocyanate and there is good evidence for lower symmetry for the azide. The SiNC bend was observed in the Raman spectrum of gaseous isocyanate at 37 cm−1 with the overtone centered at 84 cm−1. This same mode was observed in the Raman spectrum of the isothiocyanate in the liquid state at ∼45 cm−1. For the azide, this motion was observed in the Raman spectra of both the gaseous and liquid samples at 102 and 111 cm−1, respectively.  相似文献   

6.
The i.r. gas and Raman liquid spectra of CF3Si(CH3)3 and CF3Si(CD3)3 are reported and assigned for C3vsymmetry. Force constants have been calculated by a combined analysis of both isotopomers yielding ƒ (SiCF3) 2.63, ƒ (SiCH3) 3.07 and ƒ (CF) 5.70 N cm−1. The apparent weakness of the SiCF3 bond confirms the results obtained on other CF3 silanes and is discussed with respect to related molecules.  相似文献   

7.
The infrared and Raman spectra of gaseous and solid (CH3)3 GeNCO and solid (CH3)3GeNCS have been recorded over the frequency range 20–4000 cm?1 . The Raman spectra of the liquids have also been recorded. Assignments of the normal modes have been made on the bases of band types, Raman depolarization values, and characteristic frequencies. Spectral data indicate that (CH3)3 GeNCO is non-linear in all phases and that (CH3)3GeNCS has a linear or quasi-linear heavy atom skeleton in the fluid phases.  相似文献   

8.
《Chemical physics letters》1987,141(4):267-276
The first well resolved (1+1)-photodissociation spectra of molecular ions are presented. By separating the spectroscopic step (first photon) and the dissociation step (second photon) we could extend the accessible spectral region of CH3I+ and CD3I+ considerably. The ions are prepared in the vibrationless ground state by MPI in a supersonic molecular beam. A new detection technique is presented with high discrimination between wanted and unwanted ionic species. Furthermore, another new technique for unimolecular decay measurements delivers useful information for the assignment of the ion spectra. We found an improved assignment for CH3I+ and CD3I+ with consequences for molecular constants.  相似文献   

9.
The mass spectral fragmentations of various thioformaldehydes, 1,3,5-trithiacyclohexane, 1,3,5,7-tetrathiacyclooctane, 1,3,5,7,9-pentathiacyclodecane and a polymeric form (CH2S)x have been examined. The principal features of the spectra are reported. The fragmentation occurred by fracture of the ring in the cyclic compounds with or without rearrangement.  相似文献   

10.
Reaction of laser-ablated Mo atoms with CH(4) in excess argon forms the CH(3)-MoH, CH(2)=MoH(2), and CH(triple bond)MoH(3) molecules, which are identified from infrared spectra by isotopic substitution and density functional theory frequency calculations. These simple methyl, methylidene, and methylidyne molybdenum hydride molecules are reversibly interconverted by alpha-H transfers upon visible and ultraviolet irradiations. The methylidene dihydride CH(2)=MoH(2) exhibits CH(2) and MoH(2) distortion and agostic interaction to a lesser degree than CH(2)=ZrH(2). Molybdenum methylidyne trihydride CH(triple bond)MoH(3) is a stable C(3v) symmetry molecule.  相似文献   

11.
Infrared multiple photon dissociation spectra for the chloride ion solvated by either water, methanol or ethanol have been recorded using an FTICR spectrometer coupled to a free-electron laser, and are presented here along with assignments to the observed bands. The assignments made to the Cl(-)/H(2)O, Cl(-)(CH(3)OH), and Cl(-)(CH(3)CH(2)OH) spectra are based on comparison with the neutral H(2)O, CH(3)OH, and CH(3)CH(2)OH spectra, respectively. This work confirms that a band observed around 1400 cm(-1) in the Cl(-)(H(2)O) spectrum is not due to the Ar tag in Ar predissociation spectra. The carrier of this band is, most likely, the first overtone of the OHCl bend. Based on the position of the overtone in the IRMPD spectrum, 1375 cm(-1), the fundamental must occur very close to 700 cm(-1) and observation of this band should aid theoretical treatments of the spectrum of this complex. B3LYP/6-311++G(2df,2pd) calculations are shown to reproduce the IRMPD spectra of all three solvated chloride species. They also predict that attaching one or two Ar atoms to the Cl(-)(H(2)O) complex results in a shift of no more than a few wavenumbers in the fundamental bands for the bare complex, in agreement with previous experiment. For both alcohol-Cl(-) complexes, the S(N)2 "backside attack" isomers are not observed and Cl(-) is predicted theoretically, and confirmed experimentally, to be bound to the hydroxyl hydrogen. For Cl(-)(CH(3)CH(2)OH), the trans and gauche conformers are similar in energy, with the gauche conformer predicted to be thermodynamically favoured. The experimental infrared spectrum agrees well with that predicted for the gauche conformer but a mixture of gauche and anti conformers cannot be ruled out based on the experimental spectra nor on the computed thermochemistry.  相似文献   

12.
王治钒  何冰  路艳朝  王繁 《化学学报》2022,80(10):1401-1409
作者此前工作表明, 在耦合簇CCSD (Coupled-Cluster approaches within the singles and doubles approximation)与CCSD(T) (CCSD approaches augmented by a perturbative treatment of triple excitations)计算中结合单精度数与消费型图形处理单元(GPU), 可以显著提高计算速度. 然而由于CCSD(T)计算对内存的巨大需求以及消费型GPU的内存限制, 在利用消费型GPU进行加速时, 不考虑利用空间对称性的情况下, 此前开发的CCSD(T)程序仅能用于计算300~400个基函数的体系. 利用密度拟合(Density-Fitting, DF)处理双电子积分可以显著降低CCSD(T)计算过程中的内存需求, 本工作发展了基于密度拟合近似并结合单精度数进行运算的DF-CCSD(T)程序, 该程序可用于包含700个基函数的无对称性体系的单点能计算, 以及包含1700个基函数的有对称性体系. 本工作所使用的计算节点配置了型号为Intel I9-10900k的CPU和型号为RTX3090的GPU, 与用双精度数在CPU上的计算相比, 利用单精度数结合GPU进行运算可以将CCSD的计算速度提升16倍, (T)部分可提升40倍左右, 而使用单精度数引入的误差可忽略不计. 在程序开发过程中, 作者发展了一套可利用GPU或CPU结合单精度数或双精度数进行含空间对称性的矩阵操作代码库. 基于该套代码库, 可以显著降低开发含空间对称性的耦合簇代码的难度.  相似文献   

13.
The electronic structure of the zero-gap two-dimensional graphene has a charge neutrality point exactly at the Fermi level that limits the practical application of this material. There are several ways to modify the Fermi-level-region of graphene, e.g. adsorption of graphene on different substrates or different molecules on its surface. In all cases the so-called dispersion or van der Waals interactions can play a crucial role in the mechanism, which describes the modification of electronic structure of graphene. The adsorption of water on graphene is not very accurately reproduced in the standard density functional theory (DFT) calculations and highly-accurate quantum-chemical treatments are required. A possibility to apply wavefunction-based methods to extended systems is the use of local correlation schemes. The adsorption energies obtained in the present work by means of CCSD(T) are much higher in magnitude than the values calculated with standard DFT functional although they agree that physisorption is observed. The obtained results are compared with the values available in the literature for binding of water on the graphene-like substrates.  相似文献   

14.
15.
The infrared absorption spectra of matrix-isolated cis, cis-peroxynitrous acid (HOONO and DOONO) in argon have been observed. Six of the nine fundamental vibrational modes for cis, cis-HOONO have been assigned definitively, and one tentatively. Coupled-cluster, ab initio anharmonic force field calculations were used to help guide some of the assignments. The experimental matrix frequencies (cm(-1)) for cis, cis-HOONO are (a' modes) nu1 = 3303+/-1, nu2 = 1600.6+/-0.6, nu3 = 1392+/-1, nu4 = 922.8+/-0.5, nu5 = 789.7+/-0.4, nu6 = 617+/-1; and (a" mode) nu8 = 462+/-1. The fundamentals for the deuterated isotopomer, cis, cis-DOONO, are (a' modes) nu1 = 2447.2+/-0.6, nu2 = 1595.7+/-0.7, nu3 = 1089.1+/-0.4, nu4 = 888.1+/-0.4, nu5 = 786.6+/-0.5, nu6 = 613.9+/-0.9; and (a" mode) nu8 = 456.5+/-0.5.  相似文献   

16.
An expectation value approach to calculations of first-order properties using the non-iterative, triple-excitation amplitudes in the coupled cluster wave function is exploited. Three methods are suggested and analysed using the many body perturbation theory (MBPT) expansion arguments. The first method, in which non-iterative triple-excitation amplitudes are used in the expression for the expectation values, makes the wave function accurate through the second order of MBPT. In the second method, which is an extension of the first, effects of triple-excitation amplitudes are coupled with single- and double-excitation amplitudes. The correlated density matrix equivalent through the fourth order to that obtained when CCSDT-la amplitudes are used is employed in the third method. The suggested methods are tested on dipole moment and polarizability calculations for several diatomic closed-shell molecules and are compared to other related approaches. Received: 15 May 1997 / Accepted: 5 June 1997  相似文献   

17.
Benchmark, frozen-core CCSD(T) equilibrium harmonic vibrational frequencies of 12 closed-shell and five open-shell molecules are computed to within 1 cm-1 of the basis set limit using the explicitly correlated CCSD(T)-R12 method. The convergence of the standard CCSD(T) method with the one-particle basis sets of Dunning and co-workers is examined and found to be slow, with mean and maximum absolute errors of 1.3 and 3.5 cm-1 remaining at the cc-pV6Z level. Finite basis set effects do not appear to introduce systematic errors in equilibrium harmonic frequencies, and mean absolute errors reduce by a factor of 2 for each basis set cardinal number increment. The convergence of individual equilibrium harmonic frequencies is not guaranteed to be monotonic due to the associated shift in the equilibrium structure. The inclusion of computed scalar relativistic effects and previously available corrections for core-valence correlation and higher-order excitations in the cluster operator results in an agreement with experimentally derived harmonic frequencies of 0.1, 0.3, and -0.4 cm-1 for HF, N2, and CO, respectively. F2 continues to present a challenge to computational chemistry with an error of 3.2 cm-1, primarily resulting from the high basis set dependence of the quadruples contribution.  相似文献   

18.
Irradiation at 239 ± 20 nm of a p-H(2) matrix containing methoxysulfinyl chloride, CH(3)OS(O)Cl, at 3.2 K with filtered light from a medium-pressure mercury lamp produced infrared (IR) absorption lines at 3028.4 (attributable to ν(1), CH(2) antisymmetric stretching), 2999.5 (ν(2), CH(3) antisymmetric stretching), 2950.4 (ν(3), CH(3) symmetric stretching), 1465.2 (ν(4), CH(2) scissoring), 1452.0 (ν(5), CH(3) deformation), 1417.8 (ν(6), CH(3) umbrella), 1165.2 (ν(7), CH(3) wagging), 1152.1 (ν(8), S=O stretching mixed with CH(3) rocking), 1147.8 (ν(9), S=O stretching mixed with CH(3) wagging), 989.7 (ν(10), C-O stretching), and 714.5 cm(-1) (ν(11), S-O stretching) modes of syn-CH(3)OSO. When CD(3)OS(O)Cl in a p-H(2) matrix was used, lines at 2275.9 (ν(1)), 2251.9 (ν(2)), 2083.3 (ν(3)), 1070.3 (ν(4)), 1056.0 (ν(5)), 1085.5 (ν(6)), 1159.7 (ν(7)), 920.1 (ν(8)), 889.0 (ν(9)), 976.9 (ν(10)), and 688.9 (ν(11)) cm(-1) appeared and are assigned to syn-CD(3)OSO; the mode numbers correspond to those used for syn-CH(3)OSO. The assignments are based on the photolytic behavior and a comparison of observed vibrational wavenumbers, infrared intensities, and deuterium isotopic shifts with those predicted with the B3P86∕aug-cc-pVTZ method. Our results extend the previously reported four transient IR absorption bands of gaseous syn-CH(3)OSO near 2991, 2956, 1152, and 994 cm(-1) to 11 lines, including those associated with C-O, O-S, and S=O stretching modes. Vibrational wavenumbers of syn-CD(3)OSO are new. These results demonstrate the advantage of a diminished cage effect of solid p-H(2) such that the Cl atom, produced via UV photodissociation of CH(3)OS(O)Cl in situ, might escape from the original cage to yield isolated CH(3)OSO radicals.  相似文献   

19.
Using the complete active space self-consistent field (CASSCF) method with 6-311++g(3df,3pd) basis sets, a few electronic states of nitrenes (CH3)3CN and (CH3)2CHN and their positive ions are calculated. All calculated states are valence states, and their characteristics are discussed in detail. In order to investigate the Jahn-Teller effect on (CH3)3CN radical, Cs symmetry was used for (CH3)3CN and (CH3)2CHN in the calculations. The results of our calculations (CASPT2 adiabatic excitation energies and RASSI oscillator strengths) suggest that the calculated transitions of (CH3)3CN at 27,710 cm(-1) and (CH3)2CHN at 28,110 cm(-1) are attributed to 23A' --> 13A', while those of (CH3)3CN at 28,916 cm(-1) and (CH3)2CHN at 29,316 cm(-1) are attributed to 13A' --> 13A'. The vertical and adiabatic ionization energies were obtained to compare with the photoelectron spectroscopic data. These results are in agreement with previous experimental data. Also, we present a comprehensive review on the CAS calculation results for (CH3)nCH(3-n)N (n = 0-3) presented in our previous and present papers.  相似文献   

20.
The far-infrared spectra of dihalodiammine complexes of Pd(II) and Pt(II) are calculated using ab initio method at RHF/LANL2DZ level. The calculated vibrational frequencies are in good agreement with the experimental ones except for M-N stretching frequencies in cis-M(NH3)2X2 complexes, and the reason for the deviation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号