首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper is reported an extensive NMR characterization of N-methyl-N-propyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR13TFSI) room-temperature ionic liquid and its mixtures with LiTFSI. NMR was used to investigate the interactions between the ionic liquid and lithium salt and the diffusion coefficients of all ionic species present in these mixtures. The results are compared with previous DSC, Raman, and electrochemical investigations.  相似文献   

2.
A room-temperature ionic liquid (RTIL) of a quaternary ammonium cation having an ether chain, N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium bis(trifluoromethylsulfonyl)amide (DEME-TFSA), is a candidate for use as an electrolyte of lithium secondary batteries. In this study, the electrochemical ionic conductivity, sigma, of the neat DEME-TFSA and DEME-TFSA-Li doped with five different concentrations of lithium salt (LiTFSA) was measured and correlated with NMR measurements of the diffusion coefficients D and the spin-lattice relaxation times T1 of the individual components DEME (1H), TFSA (19F), and lithium ion (7Li). The ion conduction of charged ions can be activated with less thermal energy than ion diffusion which contains a contribution from paired ions in DEME-TFSA. In the doped DEME-TFSA-Li samples, the sigma and D values decreased with increasing salt concentration, and within the same sample generally DLi相似文献   

3.
室温离子液体的研究进展   总被引:3,自引:0,他引:3  
对室温离子液体的制备及性能的研究进展进行了评述。室温离子液体的阳离子多为有机含氮杂环阳离子,阴离子通常为体积较大的无机阴离子。室温离子液体用作溶剂,具有液态温度范围宽、溶解能力强、蒸气压低、粘度高、电化学窗口宽等特点,在有机合成、电化学、无机物溶液化学方面具有广阔的应用前景。  相似文献   

4.
固态聚合物电解质被认为是解决传统液态锂金属电池安全隐患和循环性能的关键材料,但仍然存在离子电导率低,界面兼容性差等问题。近年来,基于无机填料与聚合物电解质的高锂离子电导的有机-无机复合电解质备受关注。根据渗流理论,有机-无机界面被认为是复合电解质离子电导率改善的主要原因。因此,设计与优化有机-无机渗流界面对提高复合电解质离子电导率具有重要意义。本文从渗流结构的设计出发,综述了不同维度结构的无机填料用于高锂离子电导的有机-无机复合电解质的研究进展,并对比分析了不同渗流结构的优缺点。基于上述评述,展望了有机-无机复合电解质的未来发展趋势和方向。  相似文献   

5.
Ionic conductivities of the polymer electrolytes prepared from the ionomer (poly(methyl methacrylate-co-alkali metal methacrylate)), lithium perchlorate, and ethylene carbonate as a plasticizer, were studied as a function of the ion content and the alkali-metal cation of the ionomer. It was possible to obtain tough films with room-temperature ionic conductivities of ∼ 10-3 S/cm. The maximum ion conductivities of the polymer electrolytes were obtained at the ion content of 5 mol % for both Li and Na ionomer. The effects of the ion content of the ionomer on the ionic conductivities of the polymer electrolytes were mainly interpreted in terms of the characteristics of the ion aggregate formed in the polymer electrolytes. The thermal dependence of the ionic conductivity was shown to be a non-VTF pattern in some of the polymer electrolytes investigated, which is expected to be due to the presence of the ion aggregate. © John Wiley & Sons, Inc.  相似文献   

6.
全固态电池因其高能量密度和高安全性而成为具有发展前景的下一代储能技术。开发具有高室温离子电导率、优异化学/电化学稳定性、良好正/负极兼容性的固态电解质是实现全固态电池实用化的关键。卤化物固态电解质因其优异的电化学窗口、高正极稳定性、可接受的室温锂离子电导率等优势,受到了广泛的关注。本文通过对近年来卤化物电解质的相关研究进行总结,综述了该类电解质的组成、结构、离子传导路径及制备方法,并分析了金属卤化物电解质的电导率、稳定性特点,归纳了近年来该电解质在全固态电池中具有代表性的应用,并基于以上总结和分析,指出了卤化物固态电解质的研究难点及发展方向。  相似文献   

7.
Volume parameters for room-temperature ionic liquids (RTILs) and salts were developed. For 59 of the most common imidazolium, pyridinium, pyrrolidinium, tetralkylammonium, and phosphonium-based RTILs, the mean absolute deviation (MAD) of the densities is 0.007 g cm-3; for 35 imidazolium-based room-temperature salts, the MAD is 0.020 g cm-3; and for 150 energetic salts, the MAD is 0.035 g cm-3. The experimental density (Y) for an alkylated imidazolium or pyridinium-based room-temperature ionic liquid is approximately proportional to its calculated density (X) in the solid state: Y = 0.948X - 0.110 (correlation coefficient: R2 = 0.998, for BF4-, PF6-, NTf2- -containing ionic liquids); Y = 0.934X - 0.070 (correlation coefficient: R2 = 0.999, for OTf-, CF3CO2-, N(CN)2- -containing ionic liquids).  相似文献   

8.
Replacement of volatile and combustible electrolytes in conventional lithium batteries is desirable for two reasons: safety concerns and increase in specific energy. In this work we consider the use of an ionic organic plastic crystal material (IOPC), N-ethyl-N-methylpyrrolidinium tetrafluoroborate, [C2mpyr][BF(4)], as a solid-state electrolyte for lithium battery applications. The effect of inclusion of 1 to 33 mol% lithium tetrafluoroborate, LiBF(4), into [C2mpyr][BF(4)] has been investigated over a wide temperature range by differential scanning calorimetry (DSC), impedance spectroscopy, cyclic voltammetry and cycling of full Li|LiFePO(4) batteries. The increases in ionic conductivity by orders of magnitude observed at higher temperature are most likely associated with an increase in Li ion mobility in the highest plastic phase. At concentrations >5 mol% LiBF(4) the ionic conductivity of these solid-state composites is comparable to the ionic conductivity of room temperature ionic liquids. Galvanostatic cycling of Li|Li symmetrical cells showed that the reversibility of the lithium metal redox reaction at the interface of this plastic crystal electrolyte is sufficient for lithium battery applications. For the first time we demonstrate an all solid state lithium battery incorporating solid electrolytes based on IOPC as opposed to conventional flammable organic solvents.  相似文献   

9.
Direct or Ni-catalysed electroreductive homocouplings of organic halides and couplings of organic halides with activated olefins are efficiently conducted by constant current electrolyses in an undivided cell in room-temperature ionic liquids as the solvent-electrolyte media.  相似文献   

10.
Polymer/ionic liquid composites were investigated as solvent-free electrolytes for lithium batteries. Ternary electrolytes based upon poly(ethylene oxide), an ionic liquid and a conducting salt were UV crosslinked with benzophenone as the photoinitiator. Crosslinking leads to an increase in mechanical stability of the PEO composites. This straight-forward process provides a way to increase the content of ionic liquid and thus to raise ionic conductivity without loss of mechanical stability. Impedance measurements showed that the ionic conductivity of the composites is not affected by the UV curing process. Moreover, the UV curing process causes a decrease in the degree of crystallinity in the PEO composites which contributes to an increase in ionic conductivity. The present work is related to safety issues of lithium batteries.  相似文献   

11.
Temperature dependence of the physiochemical characteristics of a room-temperature ionic liquid consisting of trimethylhexylammonium (TMHA) cation and bis(trifluoromethane) sulfonylimide (TFSI) anion containing different concentrations of LiTFSI salt was examined. Electrochemical properties of a spinel LiMn(2)O(4) electrode in 1 M LiTFSI/TMHA-TFSI ionic electrolyte were investigated at different temperatures by using cyclic voltammetry, galvanostatic measurements, and electrochemical impedance spectroscopy. The Li/ionic electrolyte/LiMn(2)O(4) cell exhibited satisfactory electrochemical properties with a discharge capacity of 108.2 mA h/g and 91.4% coulombic efficiency in the first cycle under room temperature. At decreased temperature, reversible capacity of the cell could not attain a satisfactory value due to the high internal resistance of the cell and the large activation energy for lithium ion transfer through the electrode/electrolyte interface. Anodic electrolyte oxidation results in the decrease of coulombic efficiency with increasing temperature. Irreversible structural conversion of the spinel LiMn(2)O(4) in the ionic electrolyte, possibly associated with the formation of TMHA intercalated compounds and/or Jahn-Teller distortion, was considered to be responsible for the electrochemical decay with increasing cycles.  相似文献   

12.
The electrochemical stability of self-assembled monolayers was greatly enhanced by using room-temperature ionic liquids as media.  相似文献   

13.
The high ionic conductive polymer electrolytes were prepared based on poly(vinylidenefluoride) (PVDF) fibers modified via preirradiation grafting poly(methyl methacrylate) (PMMA). In these polymer electrolytes, the PVDF fibers served as the supporting phase providing dimensional stability, and PMMA acted as the gel phase helping for the trapping liquid electrolyte and substituting the nonconductive PVDF phase to provide contact with electrodes well thus increasing conductive area. The modified PVDF fibrous membranes were used as a polymer electrolyte in lithium ion battery after they were activated by uptaking 1 M LiPF6/ethylene carbonate–dimethyl carbonate (1:1 vol) liquid electrolyte, which showed a much higher room-temperature ionic conductivity than the pristine PVDF fibrous membrane. The LiCoO2-mesocarbon microbead coin cells containing the dual-phase fibrous membrane (degree of graft, 111.8%) demonstrated excellent rate performance, and the cell still retained about 86% of discharge capacity at 4C rate, as compared to that at 0.1C rate. The prototype cell showed good cycle performance.  相似文献   

14.
Efficient synthesis of a variety of 3-substituted coumarins via NaOMe-catalyzed Knoevenagel condensation and one-pot preparation of 3,4-unsubstituted coumarins in the presence of NaOMe via Wittig reaction in room-temperature ionic liquids are described. Knoevenagel condensation of 2-hydroxybenzaldehyde with dimethyl- and diethylmalonate was performed with excellent yields in room-temperature ionic liquids. Although diethyl- and dimethylchloromalonates were mostly recovered unchanged in Knoevenagel condensation, higher conversions were observed via Wittig reaction of these compounds with 2-hydroxybenzaldehyde derivatives and triphenylphosphine. Other 2-hydroxybenzaldehyde derivatives, methyl- and ethylchloroacetates, were reacted in ionic liquids to afford simple coumarins in good yields. These reactions widen the applicability of ionic liquid in organic synthesis.  相似文献   

15.
以咪唑基离子液体为代表,综述了近期普通咪唑基离子液体、功能咪唑基离子液体、支撑咪唑基离子液体和聚合咪唑基离子液体在分离固定CO2方面的研究进展,说明了各类咪唑基离子液体分离固定CO2的可行性及优缺点,并总结了离子液体固定CO2的影响因素和分离机制.  相似文献   

16.
Mutually immiscible ionic liquids   总被引:1,自引:0,他引:1  
This work presents the novel discovery of room-temperature ionic liquids that are mutually immiscible, some of which are also immiscible with solvents as diverse as water and alkanes; an archetypal biphasic system is trihexyltetradecylphosphonium chloride with 1-alkyl-3-methylimidazolium chloride (where the alkyl group is shorter than hexyl).  相似文献   

17.
Self‐standing films of (meth)acrylate‐based polymer gel electrolytes with high ionic liquid content (80 wt %) were prepared by in situ thermally or photo induced radical copolymerization of mono‐functional and di‐functional (meth)acrylates in an ionic liquid in the presence/absence of a lithium salt. Their ionic conductivity, thermal property, mechanical property, and flammability were examined. 1‐Ethyl‐3‐methylimidazolium bis(trifluoromethanesulfonyl)imide (EMImTFSI) or 1‐ethyl‐3‐methylimidazolium bis(fluorosulfonyl)imide (EMImFSI) was used as the ionic liquid, and lithium bis(trifluoromethanesulfonyl)imide LiTFSI was used as the lithium salt. The obtained films were semitransparent and flexible with good to moderate thermal stability and mechanical strength with high ionic conductivity. The EMImFSI‐containing gel electrolytes showed higher ionic conductivity than the corresponding EMImTFSI‐containing gel electrolytes. The ionic conductivity in the acrylate‐based gel electrolytes was slightly increased by addition of lithium salt, while that in the corresponding methacrylate‐based electrolytes was decreased significantly. The flame test showed the ionic liquid containing networked polymer gel electrolytes to have low if any flammability and was therefore confirmed to be highly safe. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
In many applications of room-temperature ionic liquids, it has been recognized that the interface is a vital component. In electrochemistry, for instance, the electron transfer is significant to the efficiency of the solar cell and is very much dependent on the behavior of a given interface. This review presents the current state of knowledge of room-temperature ionic liquids in contact with solids, liquids, and gas phases. Experimental and molecular modeling studies have been conducted to investigate the surface structure and composition of ions in pure ionic liquids. However, surface studies on these liquids are still in its infancy and as the range of the available surface techniques and systematic investigations are increased, our understanding will improve which will lead to advances on this field.  相似文献   

19.
A room-temperature ionic liquid containing macrocyclic compound pillar[5]arene in its core was synthesized. The ionic liquid showed high thermal stability, moderate ionic conductivity and solvent-free complexation ability with the guest tetracyanoethylene.  相似文献   

20.
A theory is provided for a reversible electro-oxidation of a neutral redox probe dissolved in room-temperature ionic liquid, which is sandwiched between an electrode surface and an aqueous solution as a thin film. If the peak potentials in cyclic voltammetry depend on the bulk concentration of electrolyte in water, the oxidation is most probably coupled to the transfer of anions from water into ionic liquid; but if the peak potentials are independent of the electrolyte concentration, the transfers of anions from water into ionic liquid and cations from ionic liquid into water are equally probable. Dedicated to Professor Dr. Yakov I. Tur’yan on the occasion of his 85th birthday.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号