首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The structure and characteristic of carbon materials have a direct influence on the electrochemical performance of sulfur-carbon composite electrode materials for lithium-sulfur battery.In this paper,sulfur composite has been synthesized by heating a mixture of elemental sulfur and activated carbon,which is characterized as high specific surface area and microporous structure.The composite,contained 70%sulfur,as cathode in a lithium cell based on organic liquid electrolyte was tested at room temperature....  相似文献   

2.
Commercial LiCoO2 has been modified with MnSiO4 as a novel coating material. The structures, morphologies, overcharge behaviors and thermal stabilities of the pristine and MnSiO4-coated LiCoO2 materials were studied. The MnSiO4-coated LiCoO2 had initial discharge specific capacities of 181.1 and 232.2 mAh g−1 within the potential ranges 2.75–4.5 and 2.75–4.7 V (vs. Li+/Li), respectively. It was found that the overcharge tolerance of the coated cathode was significantly better than that of the pristine LiCoO2 under the same conditions – the discharge specific capacities of the coated cathode at upper charge cutoff voltages of 4.5 and 4.7 V were as high as 168.7 and 154.3 mAh g−1, respectively, after 50 cycles. Moreover, DSC showed that the coated LiCoO2 had a higher thermal stability than the pristine LiCoO2.  相似文献   

3.
Cathodic electrophoretic deposition (EPD) method has been developed for the deposition of manganese dioxide films. It was shown that phosphate ester (PE) is an effective charging additive, which provides stabilization of manganese dioxide nanoparticles in suspensions. The influence of PE concentration and deposition voltage on the deposition efficiency has been studied. EPD has been utilized for the fabrication of porous nanostructured films with thickness in the range of 0.5–20 μm for application in electrochemical supercapacitors (ES). Cyclic voltammetry and chronopotentiometry data for the films tested in the 0.1 M Na2SO4 solutions showed capacitive behavior in the voltage window of 1 V. The highest specific capacitance (SC) of 377 F g−1 was obtained at a scan rate of 2 mV s−1. The SC decreased with increasing film thickness and increasing scan rate in the range of 2–100 mV s−1. The deposition mechanism, kinetics of deposition and charge storage properties of the films are discussed.  相似文献   

4.
Nanocrystalline ZnMn2O4 is prepared by a polymer-pyrolysis route and used as a novel anode for lithium ion batteries. XRD and HRTEM studies reveal that the products are highly phase-pure and 30–60 nm in size. Galvanostatic cycling of ZnMn2O4 electrode at 100 mA g−1 (about 0.52 mA cm−2) between 0.01 and 3.0 V up to 50 cycles exhibits almost stable cycling performance between 10 and 50 cycles with only an average capacity fade of 0.20% per cycle and the electrode still maintains a capacity of 569 mAh g−1 after 50 cycles.  相似文献   

5.
Hierarchically ordered porous nickel oxide array film was prepared by electrodeposition through monolayer polystyrene spheres template. The as-prepared film had a highly porous structure of interconnected macrobowls array possessing nanopores. As anode material for lithium ion batteries, the porous array NiO film exhibited weaker polarization, higher coulombic efficiency and better cycling performance in comparison with the dense NiO film. After 50 cycles, the discharge capacity of porous array NiO film was 518 mAh g? 1 at 1 C rate, higher than that of the dense NiO film (287 mAh g? 1). The enhancement of the electrochemical properties was due to the unique hierarchical porous architecture, which provided fast ion/electron transfer and alleviated the structure degradation during the cycling process.  相似文献   

6.
Zn2SnO4@PANI composites were synthesized via a micro emulsion polymerization method. The outer surfaces of monodispersed cubes are covered with amorphous aggregated PANI. The addition of PANI can create a buffering structure for Zn2SnO4 cubes. Compared with Zn2SnO4 cubes, Zn2SnO4@PANI composites show an improved electrochemical performance (491.0 mAh g?1 at a current density of 600 mAg?1 after 50 cycles). It is believed that PANI coating is a simple and effective way to improve the cycling performance for lithium batteries.  相似文献   

7.
Silicon monoxide/graphite/multi-walled carbon nanotubes (SiO/G/CNTs) material was prepared by ball milling followed by chemical vapor deposition method and characterized by X-ray diffraction, scanning electron microscopy (SEM), galvanostatic charge–discharge, and AC impedance spectroscopy, respectively. The results revealed that SiO/G/CNTs exhibited an initial specific discharge capacity of 790 mAh g−1 with a columbic efficiency of 65%. After 100 cycles, a high reversible capacity of 495 mAh g−1 is still retained. The improved electrochemical properties were due to beneficial SEI by the SEM and EIS results.  相似文献   

8.
In this work, headspace solid-phase micro-extraction (SPME) combined with gas chromatography-mass spectrometry (GC-MS) method for analysis of butyltin compounds in sediment samples was upgraded by the introduction of tandem mass spectrometry (MS/MS). Optimization and validation of this method based on an one step procedure, tetraethylborate in situ ethylation with simultaneous extraction by headspace SPME, combined with tandem mass spectrometry is described. A simple leaching/extraction step of mono-(M), di-(D) and tri-(T) butyltin (BT) compounds from the sediment is required as sample pre-treatment. The combination of the two techniques headspace SPME and MS/MS, led to very little matrix interference which permitted to attain limits of detection three or more orders of magnitude lower than those attained in previous methods: 0.3 pg g− 1 for MBT, 1 pg g− 1 for DBT and 0.4 pg g− 1 for TBT. Linear response range was from 0.02–1260 ng g− 1 for MBT, 0.07–1568 ng g− 1 for DBT and 0.04–2146 ng g− 1 for TBT and RSD < 15% was also obtained. The method was efficiently applied to a real sample sediment from Sado River estuary in Portugal, revealing the existence of BTs pollution, as the TBT level of 189 ± 15 ng g− 1 was much higher than the maximum established as provisional ecotoxicological assessment criteria.  相似文献   

9.
A new type of polyphenylene, ionic liquid (IL) 1,3-methylimidazolium hexafluorophosphate substituted, has been prepared by electrodeposition on Au electrode surface via pulse galvanostatic method in 1-butyl-3-methylimidazolium hexafluorophosphate solution. The obtained polymer film had a spherulitic morphology with smallest grains of around 500 nm. Infrared spectrometry revealed that polyphenylene was deposited to a certain extent. The capacitive behavior of the IL substituted polyphenylene was investigated by cyclic voltammetry (CV) and galvanostatic charge–discharge method in 0.2 mol L−1 H2SO4 aqueous solutions or pure IL [bmim]PF6. The specific capacitance of the polymer at the charge–discharge current density of 1 mA cm−2 equaled 206 F g−1 in acidic aqueous solution or 164 F g−1 in [bmim]PF6. Additionally, excellent charge–discharge cycle stability (over 85% value of specific capacitance remained after 600 charge–discharge cycles) and power characteristics of the polymer electrode were observed in both electrolytes.  相似文献   

10.
In the present work, a slurry sampling flame atomic absorption spectrometric method to determine directly manganese and zinc in powdered chocolate samples is proposed. The optimization step was performed using univariate methodology involving the following factors: nature and concentration of the acid solution, sonication time, and particle size. The established conditions led to the use of a sample mass of 150 mg, 2.0 mol L− 1 nitric acid solution, sonication time of 15 min, and a slurry volume of 50 mL. This method allows the determination of manganese and zinc with detection limit of 52 and 61 ng g− 1, respectively, and a precision expressed as relative standard deviation (RSD) of 2.6% and 3.2% (both, n = 10) for contents of manganese and zinc of 52.4 and 100.0 μg g− 1, respectively. The proposed method was applied for determination of manganese and zinc in five powdered chocolate samples. In these, the manganese content varied from 42.8 to 52.7 and from 88.6 to 102.4 μg g− 1 of zinc. The analytical results were compared with the results obtained by analysis of these samples after digestion using open vessel and acid bomb digestion procedures and determination using FS-FAAS. The statistical comparison by t-test (95% confidence level) showed no significant difference between these results.  相似文献   

11.
We reported sulfonated poly(ether ether ketone) (SPEEK, 61% degree of sulfonation)–metal oxides (MO2:SiO2, TiO2 and ZrO2)–polyaniline composite membranes. Metal oxides were incorporated into the swelled SPEEK membrane by sol–gel method and cured by thermal treatment. SPEEK–metal oxide membranes surfaces were modified with polyaniline (PANI) by a redox polymerization process. It was observed that water retention capacity of membrane was increased and methanol permeability was reduced due to synergetic effect of metal oxides and surface modification with polyaniline. These composite membranes showed extremely low methanol permeability (1.9–1.3 × 10−7 cm2 s−1), which was lower than till reported values either for SPEEK–metal oxide or SPEEK/PANI membranes. Relatively high selectivity parameter (SP) values at 343 K of these membranes, especially S–SiO2–PANI and S–TiO2–PANI, indicated their great advantages over Nafion117 (N117) membrane for targeting on moderate temperature applications due to the synergetic effect of MO2 and PANI in SPEEK matrix. S–TiO2–PANI and N117 showed comparable cell performance in direct methanol fuel cell (DMFC).  相似文献   

12.

This work describes comparative study on the application of Li4Ti5O12 (LTO) as anode materials for lithium-ion batteries which were successfully prepared by sol-gel synthesis with the use of two titanium sources. One of them was anatase-type titanium dioxide (TiO2), whereas the second was tetrabutyl titanate (TBT). Both obtained LTO materials were very similar in terms of their crystallinity and purity. In turn, the sample synthetized with TBT source revealed better particle dispersibility, and its particles were slightly lower in size. These particular features resulted in higher Li+ diffusion coefficient and better kinetic of Li+ ions during charge transfer reactions for the LTO synthetized with TBT source. This reflected in specific capacitance values for both electrodes which equalled 150 mAh g−1, 120 mAh g−1, and 63 mAh g−1 for TBT-LTO and 120 mAh g−1, 80 mAh g−1, and 58 mAh g−1 for TiO2-LTO at C-rates of 1, 5, and 10 C, respectively.

  相似文献   

13.
Boron-doped diamond hollow fiber membrane (BDD–HFM) was fabricated as a novel type of porous conductive diamond. BDD–HFM was obtained by deposition of BDD polycrystalline film onto a quartz filter substrate consisting of quartz fibers, followed by etching of the substrate in HF/HNO3 aqueous solution. Cross-sectional scanning electron microscope (SEM) observation showed the inner diameter and wall thickness of the BDD hollow fibers were in the range of 0.4–2 and 0.2–2 μm, respectively. The BDD–HFM electrode exhibited a relatively large double-layer capacitance (ca. 13 F g−1) in 0.1 M H2SO4. Electrochemical AC impedance properties were simulated using an equivalent circuit model containing a transmission line model, which indicated characteristics of a porous electrode material.  相似文献   

14.
Five different cellulose-based fabrics were used to prepare activated carbon cloths (ACCs) by phosphoric acid activation at pre-established experimental conditions, in an attempt to explore the effect of the precursor's nature on properties of the resulting ACCs. Characterization by elemental analysis, nitrogen (77 K) adsorption, and scanning electron microscopy was carried out. Electrical properties of the developed ACCs were investigated to examine the possibility of regenerating the ACCs by direct electrical heating. Thermal behavior of the raw precursor and of one of the acid-treated fabrics was also studied by thermogravimetric analysis and noticeable differences due to the precursors’ characteristics and acid impregnation were detected, respectively. The ACCs derived from a denim precursor showed BET surface area (784 m2 g−1) and total pore volume (0.40 cm3 g−1) lower than those obtained from the four other precursors (1058–1183 m2 g−1, 0.55–0.67 cm3 g−1), whereas carbon content and yield for the former were higher. Morphology and physical appearance of the ACCs were dependent on the raw fabric employed, with most of the samples presenting well-preserved fibres integrity. Besides, the denim-derived ACCs also showed the lowest electrical resistivity (8.10−3 Ωm). It was properly correlated with the elemental carbon content and total pore volume of the developed ACCs.  相似文献   

15.
We report self-supported porous Co/NiO core/shell nanowire arrays via the combination of hydrogen reduction and chemical bath deposition methods. The Co nanowire acts as the backbone for the growth of NiO nanoflake shell forming hierarchically porous Co/NiO core/shell nanowire arrays. As electrode materials for pseudo-capacitors, the Co/NiO core/shell nanowire arrays exhibit a specific capacitance of 956 F g 1 at 2 Å g 1 and 737 F g 1 at 40 Å g 1, and good cycling stability, which is mainly due to the metal nanowire based core/shell nanowire architecture which provides good conductive network as well as fast ion/electron transfer and sufficient contact between active materials and electrolyte.  相似文献   

16.
The present work proposes a direct method based on slurry sampling for the determination of zinc and copper in human hair samples by multi-element sequential flame atomic absorption spectrometry. The slurries were prepared by cryogenic grinding and sonication of the samples. The optimization step was performed using univariate methodology and the factors studied were: nature and concentration of the acid solution, amount sample/slurry volume, sonication time, and particle size. The established experimental conditions are the use of a sample mass of 50 mg, 2 mol L− 1 nitric acid solution, sonication time of 20 min and slurry volume of 10 mL. Adopting the optimized conditions, this method allows the determination of zinc and copper with detection limits of 88.3 and 53.3 ng g− 1, respectively, and precision expressed as relative standard deviation (RSD) of 1.7% and 1.6% (both, n = 10) for contents of zinc and copper of 100.0 and 33.3 μg g− 1, respectively. The accuracy was checked and confirmed by analysis of two certified reference materials of human hair. The procedure was applied for the determination of zinc and copper in two human hair samples. The zinc and copper contents varied from 100.0 to 175.6 and from 3.2 to 32.8 μg g− 1, respectively. These samples were also analyzed after complete digestion in a closed system and determination by FAAS. The statistical comparison by t-test (95% confidence level) showed no significant difference between these results.  相似文献   

17.
Sun X  Xia K  Liu B 《Talanta》2008,76(4):747-751
This paper details the fabrication of indole (ID) self-assembled multilayers (SAMs) and fluorescence interfacial sensing for organophosphorus (OP) pesticides. Quartz/APES/AuNP/l-Cys/ID film was constructed on l-cysteine modified Quartz/APES/AuNP surface via electrostatic attraction between ID and l-cysteine. Cyclic voltammetry indicates that ID is immobilized successfully on the gold surface. Fluorescence of the Quartz/APES/AuNP/l-Cys/ID film shows sensitive response toward OPs. The fluorescent sensing conditions of the SAMs are optimized that allow linear fluorescence response for methylparathion and monocrotophos over 5.97 × 10−7 to 3.51 × 10−6 g L−1 and 3.98 × 10−6 to 3.47 × 10−5 g L−1, with detection limit of 6.1 × 10−8 gL−1 and 3.28 × 10−6 gL−1, respectively. Compared to bulk phase detection, interfacial fluorescence sensing based on the SAMs technology shows higher sensitivity by at least 2 order of magnitude.  相似文献   

18.
使用廉价的硅铝合金前驱体,通过简单的化学沉积方法制备了新型双金属(Sn/Ni)掺杂多孔硅微球(pSi@SnNi)。pSi@SnNi复合材料的三维多孔结构可以缓冲硅在锂化过程中的巨大体积膨胀,增加储锂活性位点。双金属(Sn/Ni)的掺杂可以提高硅的电子导电性,改进pSi的结构稳定性。由于其独特的组成和微观结构,具有适当Sn/Ni含量的pSi@SnNi复合材料显示了较大的可逆储锂容量(0.1 A·g-1下为2 651.7 mAh·g-1)、较高的电化学循环稳定性(1 A·g-1下400次循环后为1 139 mAh·g-1)和优异的倍率性能(2.5 A·g-1下为1 235.8 mAh·g-1)。  相似文献   

19.
《先进技术聚合物》2018,29(6):1697-1705
Nanocomposites of gold nanoparticles and polyaniline are synthesized by using HAuCl4 and ammonium peroxydisulfate as the co‐oxidant involving in situ polymerization of aniline and in situ reduction of HAuCl4. Through these in situ methods, the synthesized Au nanoparticles of ca. 20 nm embedded tightly and dispersed uniformly in polyaniline backbone. With the Au content in composite increasing from 4.20 to 24.72 wt.%, the specific capacitance of the materials first increased from 334 to 392 F g−1 and then decreased to 298 F g−1. Based on the real content of PANI in composite material, the highest specific capacitance is calculated to be 485 F g−1 at the Au amount of 19.15 wt.%, which remains 55.6% after 5000 cycles at the current density of 2 A g−1. Finally, the asymmetric supercapacitor of AuNP/PANI||AC and the symmetric supercapacitor of AuNP/PANI||AuNP/PANI are assembled. The asymmetric supercapacitor device shows a better electrochemical performance, which delivers the maximum energy density of 7.71 Wh kg−1 with power density of 125 W kg−1 and maximum power density of 2500 W kg−1 with the energy density of 5.35 Wh kg−1.  相似文献   

20.
We report the high-rate capability and good cyclability of three-dimension nanoporous NiO films as the anodes of lithium-ion batteries. The NiO films are fabricated by immersing foam nickel substrates in an 80 °C aqueous solution containing ammonia and potassium peroxydisulfate, and subsequent heat treatment at 500 °C. At a rate of 1.0 C, the film electrodes maintain a capacity of 560 mAh g−1 as well as capacity retention of 97% after 100 discharge/charge cycles. When the current density is increased to 14C, 42% of the capacity can be retained. Owing to the ease of large-scale fabrication and superior electrochemical performance, these NiO films will be promising anodes for high-energy-density lithium-ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号