首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Design of air-guiding honeycomb photonic bandgap fiber   总被引:1,自引:0,他引:1  
Yan M  Shum P  Hu J 《Optics letters》2005,30(5):465-467
We introduce a design procedure for hollow-core photonic bandgap (PBG) fiber with a cladding made of air-silica honeycomb photonic crystal (PC). It is found that air-guiding can be realized in both fundamental and secondary PBG regions of the cladding PC. Dispersion and radiation loss of the fundamental mode for two types of fiber structure are theoretically calculated. The fibers show promising waveguiding ability.  相似文献   

2.
Ren G  Shum P  Zhang L  Yu X  Tong W  Luo J 《Optics letters》2007,32(9):1023-1025
We report the fabrication and characterization of a new type all-solid photonic bandgap fiber. By introducing an index depressed layer around the high-index rod in the unit cell of photonic crystal cladding, transmission loss as low as 2 dB/km within the first bandgap is realized for the all-solid photonic bandgap fiber with a bandwidth of over 700 nm. The bend loss experiment shows that the photonic bandgap fiber is much less bend sensitive than single-mode fiber.  相似文献   

3.
We investigate both experimentally and numerically confinement and bend losses in solid-core photonic bandgap fibers. We proposed two designs, based on the addition of air regions in the cladding, allowing these losses to be reduced significantly while keeping the optical properties of bandgap fibers. We also present and discuss numerical results on the impact of transversal defects on the fiber confinement loss in the case of a realistic low loss fiber.  相似文献   

4.
A theoretical investigation of a novel type of optical fiber is presented. The operation of the fiber relies entirely on wave guidance through the photonic bandgap effect and not on total internal reflection, thereby distinguishing that fiber from all other known fibers, including recently studied photonic crystal fibers. The novel fiber has a central low-index core region and a cladding consisting of a silica background material with air holes situated within a honeycomb lattice structure. We show the existence of photonic bandgaps for the silica-air cladding structure and demonstrate how light can be guided at the central low-index core region for a well-defined frequency that falls inside the photonic bandgap region of the cladding structure.  相似文献   

5.
Hollow-core photonic bandgap fibers based on a square lattice cladding   总被引:1,自引:0,他引:1  
Poletti F  Richardson DJ 《Optics letters》2007,32(16):2282-2284
We propose a novel air-guiding photonic bandgap fiber based on a square lattice cladding. The fiber presents a 20% wider bandgap than is achievable with a conventional triangular-lattice-based cladding and with the choice of a nine-cell core can be effectively single moded at all wavelengths within the bandgap.  相似文献   

6.
We propose a simple analytical theory for low-index core photonic bandgap optical waveguides based on an antiresonant reflecting guidance mechanism. We identify a new regime of guidance in which the spectral properties of these structures are largely determined by the thickness of the high-index layers and the refractive-index contrast and are not particularly sensitive to the period of the cladding layers. The attenuation properties are controlled by the number of high/low-index cladding layers. Numerical simulations with the beam propagation method confirm the predictions of the analytical model. We discuss the implications of the results for photonic bandgap fibers.  相似文献   

7.
We present a numerical study of two dimensional solid core photonic bandgap fiber design criteria for their particular application to blue/visible supercontinuum generation. By exploiting their strong frequency-dependent dispersion when compared to index guiding micro-structured fibers, we highlight the design of solid core photonic bandgap fibers to fulfill group index matching conditions between the first ejected optical soliton and the trapped dispersive wave generated in the visible wavelength range. We study how these matching conditions depend on the opto-geometrical parameters of the micro-structured cladding, and we use frequency-domain numerical simulations to determine the expected supercontinuum spectral characteristics for selected cases. We investigate design criteria to generate short wavelengths by pumping in such photonic bandgap fibers in different pulse duration regimes and we identify a novel class of short wavelength (blue/visible) supercontinuum generation in the 3rd bandgap of a typical structure by pumping into the 2nd bandgap through a high attenuation spectral region.  相似文献   

8.
All-solid photonic bandgap fiber   总被引:2,自引:0,他引:2  
We describe the design and fabrication of a photonic bandgap fiber formed with two different glasses. As in a hollow-core fiber, light is guided in a low-index core region because of the antiresonances of the high-index strands in the fiber cladding. The structure described represents an ideal bandgap fiber that exhibits no interface modes and guides over the full width of multiple bandgaps.  相似文献   

9.
Photonic crystal fibers (PCFs) can guide light by the photonic bandgap (PBG) effect created by the periodically arranged air holes in the cladding. In this paper, the bandgap properties of Kagomé photonic crystal fibers (KPCFs) are investigated in detail. First, the bandgap properties of PCFs based on the basic Kagomé lattice are analyzed and compared with the PBGs of PCFs based on honeycomb and triangular lattices. We highlight the similarities between KPCFs and honeycomb PCFs in their PBGs, both having air-guiding regions only at very large air filling fractions (AIFs), whereas the PBGs of triangular PCFs can have large air-guiding regions at smaller AIFs due to the difference in the gap structure. In the second half of this paper, we show how the PBGs of KPCFs can be modified by introducing an extra air hole into the vacant space of the original lattice. In particular, KPCFs with medium-sized air holes can be designed to guide air by introducing extra air holes of a larger size. The air-guiding regions of KPCFs with very large air holes can also be greatly extended by the extra air holes. These air-guiding regions occur at higher normalized frequencies, resulting in larger air hole pitches favorable for fabrication. PACS 42.70.Qs; 42.25.Bs; 42.81.Qb  相似文献   

10.
Analysis of air-guiding photonic bandgap fibers   总被引:8,自引:0,他引:8  
We present what is to our knowledge the first theoretical analysis of air-guiding photonic bandgap fibers. The fibers are characterized by a large hollow core and a microstructured cladding exhibiting photonic bandgap effects. Using an efficient, full-vectorial numerical method, we explain the operational principle of the fibers and obtain detailed information about the properties of the air-guided modes. This information includes accurate determination of the modes' spectral extent, cutoff properties, and mode-field distributions.  相似文献   

11.
Partial bandgap characteristics of parallelogram lattice photonic crystals are proposed to suppress the radiation modes in a compact dielectric waveguide taper so as to obtain high transmittance in a large wavelength range. Band structure of the photonic crystals shows that there exists a partial bandgap, The photonie crystals with partial bandgap are then used as the cladding of a waveguide taper to reduce the radiation loss efficiently. In comparison with the conventional dielectric taper and the complete bandgap photonic crystal taper, the partial bandgap photonic crystal taper has a high transmittance of above 85% with a wide band of 170 nm.  相似文献   

12.
We report synoptically an investigation of design, fabrication and characterization of a new all-solid photonic bandgap fiber. By introducing an index depressed layer around a high index core in every unit cell of photonic crystal cladding, a novel all-solid bandgap fiber is predicted to obtain low confinement and bend losses within low-order bandgaps. After optimizing the structure parameters, we fabricate a batch of rods used for cladding cells, select a pure-silica rod for core cell and an inner-hexagonal jacket tube. We demonstrate an all-solid bandgap fiber with the transmission loss as low as 2 dB/km at 1,310 nm and a bandwidth of over 700 nm within the first bandgap. The guiding properties are also measured, respectively, such as transmission spectrum, attenuation spectrum, bend loss, mode field intensity profile, and chromatic dispersion.  相似文献   

13.
Wang Z  Kai G  Liu Y  Liu J  Zhang C  Sun T  Wang C  Zhang W  Yuan S  Dong X 《Optics letters》2005,30(19):2542-2544
Coupling characteristics of dual-core photonic bandgap fibers with triangular photonic crystal cladding are investigated by use of a vector plane-wave expansion method and a vector finite-element method. We demonstrate the eigenmodes and the coupling length for two orthogonal polarizations. A decoupling phenomenon is found at a certain wavelength in this fiber configuration. The decoupling effect is attributed to the effect of surface modes on the eigenmodes. The decoupling wavelength decreases as the ratio of core radius to cladding air-hole pitch increases from 1.05 to 1.15.  相似文献   

14.
We have analyzed the thermal influence on the bandgap properties of liquid-crystal photonic crystal fibers. The bandgap parameters which affect the transmission conditions have been investigated. It is observed that the photonic bandgap can be thermally tuned, i.e. the red or blue shift of the bandgap results from the temperature dependence of the refractive index of the liquid crystal. For the planar alignment of liquid-crystal filled cladding, the ordinary refractive index plays a major role in determining the bandgap properties; the extraordinary refractive index comes into influence while the ordinary refractive index is relatively constant of temperature. The analyses agree well with the experiments results.  相似文献   

15.
We report a hybrid chalcogenide-silica photonic crystal fiber made by pressure-assisted melt-filling of molten glass. Photonic bandgap guidance is obtained at a silica core placed centrally in a hexagonal array of continuous centimeters-long chalcogenide strands with diameters of 1.45 μm. In the passbands of the cladding, when the transmission through the silica core is very weak, the chalcogenide strands light up with distinct modal patterns corresponding to Mie resonances. In the spectral regions between these passbands, strong bandgap guidance is observed, where the silica core transmission loss is 60 dB/cm lower. The pressure-assisted fabrication approach opens up new ways of integrating sophisticated glass-based devices into optical fiber circuitry with potential applications in supercontinuum generation, magneto-optics, wavelength selective devices, and rare-earth-doped amplifiers with high gain per unit length.  相似文献   

16.
Selective mode excitation in hollow-core photonic crystal fiber   总被引:2,自引:0,他引:2  
Modes are selectively excited by launching light through the cladding from the side into a hollow-core photonic crystal fiber. Measuring the total output power at the end of the fiber as a function of the angle of incidence of the exciting laser beam provides a powerful diagnostic for characterizing the cladding bandgap. Furthermore, various types of modes on either side of the bandgap are excited individually, and their nearfield images are obtained.  相似文献   

17.
One-dimensional porous silicon (PSi) photonic quantum-well structures have been electrochemically fabricated and spectroscopically characterized. The photonic well in the structure is a photonic crystal (PC) consisting of alternately stacked high- and low-refractive-index PSi layers. Discrete states are observed in both reflectance and transmission spectra. It is found that the number of confined states appearing in the photonic bandgap of the photonic barrier depends on the number of periods adopted in the well PC. Thus, increased confined photonic states can be created simply by increasing the number of periods of the well PC in the structures. Received: 26 February 2002 / Accepted: 17 May 2002 / Published online: 4 December 2002 RID="*" ID="*"Corresponding author. Fax: +86-21/6510-4949, E-mail: xyhou@fudan.edu.cn  相似文献   

18.
Microstructured photonic bandgap fibers with a doped honeycomb cladding structure and the guiding defect defined by the absence of doping are proposed as nonlinear optical fibers for short wavelengths. It is shown that zero-dispersion wavelengths below 500 nm and corresponding effective areas of 1-2 microm2 can be obtained if structures with interhole distances near 600 nm can be fabricated. The cutoff wavelength for guidance of second-order modes can be controlled by variation of the radius and index contrast of the doped regions.  相似文献   

19.
栗岩锋  胡晓堃  王爱民 《物理学报》2011,60(6):64212-064212
设计了基于断环结构的全固光子带隙光纤,其背景材料为熔石英而断环结构由若干掺杂的高折射率介质柱构成.基于平面波展开法计算得到的态密度图和Bloch模场分布表明,该种光纤中的一个高阶带隙可以得到调节并被极大展宽,带隙调节的基本原理是断环可以同时控制包层介质柱的线偏振模式的角向和径向模式阶数.研究表明,断环中的介质柱数目决定了受影响最小的一组线偏振模式的最高角向阶数,而带隙宽度受介质柱尺寸影响很大.这一宽的高阶带隙可以用来设计带隙中心分别在800和1550 nm、带宽分别为488和944 nm的全固光子带隙光纤 关键词: 全固光子带隙光纤 光子带隙 光纤设计 平面波展开法  相似文献   

20.
A numerical investigation of group birefringence is carried out on a recently reported highly birefringent hollow-core photonic bandgap fiber by use of an efficient vector finite-element method. The hollow fiber core has an area as large as that of approximately four airholes in the cladding region and assumes a rhombic shape with round corners, and the airholes in the cladding region are hexagonal and provide a high air-filling fraction. Numerical results show very high group birefringence of the order of 10(-2) and phase birefringence of the order of 10(-3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号