首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jeong S  Song X  Jeong S  Oh M  Liu X  Kim D  Moon D  Lah MS 《Inorganic chemistry》2011,50(23):12133-12140
Solvothermal reactions of manganese(II) chloride tetrahydrate with a bis-tetrazole ligand, 2,6-di(1H-tetrazol-5-yl)naphthalene (H(2)NDT), in N,N'-dimethylformamide (DMF)/MeOH mixed solvent at two slightly different temperatures, 75 and 100 °C, led to two different metal-organic frameworks (MOFs), [Mn(II)(3)O(HNDT)(2)(NDT)(DMF)(3)] (1) and [Mn(II)(5)O(2)(HNDT)(2)(NDT)(2)(DMF)(8)] (2), with different net topologies. Single-crystal X-ray diffraction studies reveal that 1 is constructed from an unprecedented trinuclear building block, [Mn(II)(3)O(CN(4))(6)], as a 6-connected trigonal prismatic secondary building unit (SBU) of topological D(3h) site symmetry, and that the ligand in the HNDT(-1)/NDT(2-) deprotonation states is a linker, where two tetrazole (CN(4)) groups of the ligand are connected via a rigid naphthyl group. The tetrazole groups in 1 adopt a 1,2-μ-bridging mode with the manganese(II) ions to form a μ(3)-oxo trinuclear SBU. The trigonalprismatic SBU in 1 is connected to six neighboring SBUs to form a three-dimensional MOF of acs net topology. 2 is constructed from an unprecedented pentanuclear building block, [Mn(II)(5)O(2)(CN(4))(8)], as an 8-connected tetragonal prismatic SBU of topological D(4h) site symmetry. The tetrazole groups in 2 adopt monodentate, 1,2-μ- and 2,3-μ-bridging bidentate and 1,2,3-μ-bridging tridentate binding modes with the manganese(II) centers to form a bis-μ(3)-oxo pentanuclear SBU of local C(2) site symmetry. The tetragonal prismatic SBU in 2 is connected to eight neighboring SBUs to form a 3-D MOF of bcu net topology.  相似文献   

2.
A novel, three-dimensional, noninterpenetrating microporous metal-organic framework (MOF), [Zn7O2(pda)5(H2O)2]5 DMF4 EtOH 6 H2O (1) (H2PDA=p-phenylenediacrylic acid, DMF=N,N-dimethylformamide, EtOH=ethanol), was synthesized by constructing heptanuclear zinc carboxylate secondary building units (SBUs) and by using rigid and linear aromatic carboxylate ligands, PDA. The X-ray crystallographic data reveals that the seven zinc centers of 1 are held together with ten carboxylate groups of the PDA ligands and four water molecules to form a heptametallic SBU, Zn7O4(CO2)10, with dimensions of 9.8 x 9.8 x 13.8 A3. Furthermore, the heptametallic SBUs are interconnected by PDA acting as linkers, thereby generating an extended network with a three-dimensional, noninterpenetrating, intersecting large-channel system with spacing of about 17.3 A. As a microporous framework, polymer 1 shows adsorption behavior that is favorable towards H2O and CH3OH, and substantial H2 uptake. In terms of the heptanuclear zinc carboxylate SBUs, polymer 1 exhibits interesting photoelectronic properties, which would facilitate the exploration of new types of semiconducting materials, especially among MOFs containing multinuclear metal carboxylate SBUs.  相似文献   

3.
Five metal-organic frameworks (MOFs) formed by [WS(4)Cu(x)](x-2) secondary building units (SBUs) and multi-pyridyl ligands are presented. The [WS(4)Cu(x)](x-2) SBUs function as network vertexes showing various geometries and connectivities. Compound 1 contains one-dimensional channels formed in fourfold interpenetrating diamondoid networks with a hexanuclear [WS(4)Cu(5)](3+) unit as SBU, which shows square-pyramidal geometry and acts as a tetrahedral node. Compound 2 contains brick-wall-like layer also with a hexanuclear [WS(4)Cu(5)](3+) unit as SBU. The [WS(4)Cu(5)](3+) unit in 2 is a new type of [WS(4)Cu(x)](x-2) cluster unit in which the five Cu(+) ions are in one plane with the W atom, forming a planar unit. Compound 3 shows a nanotubular structure with a pentanuclear [WS(4)Cu(4)](2+) unit as SBU, which is saddle-shaped and acts as a tetrahedral node. Compound 4 contains large cages formed between two interpenetrated (10,3)-a networks also with a pentanuclear [WS(4)Cu(4)](2+) unit acting as a triangular node. The [WS(4)Cu(4)](2+) unit in 4 is isomeric to that in 3 and first observed in a MOF. Compound 5 contains zigzag chains with a tetrahedral [WS(4)Cu(3)](+) unit as SBU, which acts as a V-shaped connector. The influence of synthesis conditions including temperature, ligand, anions of Cu(I) salts, and the ratio of [NH(4)](2)WS(4) to Cu(I) salt on the formation of these [WS(4)Cu(x)](x-2)-based MOFs were also studied. Porous MOF 3 is stable upon removal and exchange of the solvent guests, and when accommodating different solvent molecules, it exhibits specific colors depending on the polarity of incorporated solvent, that is, it shows a rare solvatochromic effect and has interesting prospects in sensing applications.  相似文献   

4.
Four new metal-organic frameworks (MOFs) containing chiral channels have been synthesized using an achiral, triazine-based trigonal-planar ligand, 4,4',4' '-s-triazine-2,4,6-triyltribenzoate (TATB), and an hourglass secondary building unit (SBU): Zn3(TATB)2(H2O)2.4DMF.6H2O (1); Cd3(TATB)2(H2O)2.7DMA.10H2O (2); [H2N(CH3)2][Zn3(TATB)2(HCOO)].HN(CH3)2.3DMF.3H2O (3); [H2N(CH3)2][Cd3(TATB)2(CH3COO)].HN(CH3)2.3DMA.4H2O (4). MOFs 1 and 2 are isostructural and possess (10,3)-a nets containing large chiral channels of 20.93 and 21.23 A, respectively, but are thermally unstable due to the easy removal of coordinated water molecules on the SBU. Replacement of these water molecules by formate or acetate generated in situ leads to 3 and 4, respectively. Formate or acetate links SBUs to form infinite helical chains bridged by TATB to create three-dimensional anionic networks, in which one of the two oxygen atoms of the formate or acetate is uncoordinated and points into the void of the channels. This novel SBU-stabilization and channel-functionalization strategy may have general implications in the preparation of new MOFs. Thermogravimetric analysis (TGA) shows that solvent-free 3' is thermally stable to 410 degrees C, while TGA studies on samples vapor-diffused with water, methanol, and chloroform show reversible adsorption. MOF 3 also has permanent porosity with a large Langmuir surface area of 1558 m2/g. All complexes exhibit similar strong luminescence with a lambdamax of approximately 423 nm upon excitation at 268.5 nm.  相似文献   

5.
Caging cages: Crystals of a metal-organic framework, MOF-123 [Zn(7) O(2) (NBD)(5) (DMF)(2) ] have a three-dimensional porous structure in which DMF ligands (see picture, pink) protrude into small channels. Removal of these ligands triggers the transformation of this MOF to the doubly interpenetrating form, MOF-246 [Zn(7) O(2) (NBD)(5) ]. Moreover, addition of DMF into MOF-246 triggers reverse transformation to give MOF-123. NBD=2-nitrobenzene-1,4-dicarboxylate.  相似文献   

6.
Four new homochiral metal-organic framework (MOF) isomers, [Zn(l-L(Cl))(Cl)](H(2)O)(2) (1), [Zn(l-L(Br))(Br)](H(2)O)(2) (2), [Zn(d-L(Cl))(Cl)](H(2)O)(2) (3), and [Zn(d-L(Br))(Br)](H(2)O)(2) (4) [L = 3-methyl-2-(pyridin-4-ylmethylamino)butanoic acid], have been synthesized by using a derivative of L-/D-valine and Zn(CH(3)COO)(2)·2H(2)O. A three-periodic lattice with a parallel 1D helical channel was formed along the crystallographic c-axis. Molecular rearrangement results in an unprecedented zeolitic unh-topology in 1-4. In each case, two lattice water molecules (one H-bonded to halogen atoms) form a secondary helical continuous water chain inside the molecular helix. MOFs 1 and 2 shows different water adsorption properties and hence different water affinity. The arrangement of water molecules inside the channel was monitored by variable-temperature single-crystal X-ray diffraction, which indicated that MOF 1 has a higher water holding capacity than MOF 2. In MOF 1, water escapes at 80 °C, while in 2 the same happens at a much lower temperature (~40 °C). All the MOFs reported here shows reversible crystallization by readily reabsorbing moisture. In MOFs 1 and 2, the frameworks are stable after solvent removal, which is confirmed by a single-crystal to single-crystal transformation. MOFs 1 and 3 show high proton conductivity of 4.45 × 10(-5) and 4.42 × 10(-5) S cm(-1), respectively, while 2 and 4 shows zero proton conductivity. The above result is attributed to the fact that MOF 1 has a higher water holding capacity than MOF 2.  相似文献   

7.
Crystalline metal-organic framework (MOF) nanosheets have been fabricated via top-down delamination from bulk crystals of a layered MOF, {Zn(TPA)(H(2)O)·DMF}(n) (MOF-2), and characterized by Tyndall scattering, scanning electron microscopy and atomic force microscopy measurements. The delaminated MOF-2 nanosheets exhibit remarkable amine intercalation property and reversible amine exchangeability.  相似文献   

8.
Three unusual polyoxovanadate-based inorganic-organic hybrid complexes, [Zn(Im)(2)(DMF)(2)](2)[H(2)V(10)O(28)]·Im·DMF (1), [Zn(3)(Htrz)(6)(H(2)O)(6)][V(10)O(28)]·10H(2)O·Htrz (2) and {[Zn(3)(trz)(3)(H(2)O)(4)(DMF)](2)[V(10)O(28)]·4H(2)O}(n) (3) (Im = imidazole, Htrz = 1,2,4-triazole, DMF = N,N'-dimethylammonium) have been synthesized at room temperature via evaporative crystallization, and characterized by single-crystal X-ray diffraction. Complex 1 shows the structure of a discrete [V(10)O(28)](6-) cluster grafted by two [Zn(Im)(2)(DMF)(2)](2+) fragments through two bridged oxygen atoms, representing a rarely observed coordination mode. Complex 2 consists of a linear trinuclear Zn(II) unit bridging six Htrz ligands and a [V(10)O(28)](6-) cluster as the counter anion, where the extensive hydrogen-bonding interactions lead to {Zn(3)-V(10)}(SMF) and a special water layer involving (H(2)O)(36) rings, and consequently forms a unique 3D metal-organic-water supramolecular network. Complex 3 can be described as a 3,4-connected fsc-type network, and is the first example of open coordination 3D framework based on [V(10)O(28)](6-) and the other two different secondary building units, involving mononuclear and binuclear Zn(II)-Htrz motifs. The optical properties of complexes 1-3 in the solid state are investigated at room temperature. The results show that complexes 1 and 3 emit intense blue luminescences attributed to the ligands, while complex 2 exhibits an infrequent fluorescent property, emitting both blue and yellow luminescences at 472 and 603 nm simultaneously. Furthermore, powder X-ray diffraction and thermogravimetric analyses of 1-3 are also investigated, which demonstrate their high purities and thermal stabilities.  相似文献   

9.
Shi D  Ren Y  Jiang H  Cai B  Lu J 《Inorganic chemistry》2012,51(12):6498-6506
A tritopic carboxylate ligand, tris(4'-carboxybiphenyl)amine (L-H(3)), has been synthesized and applied in the construction of microporous metal-organic frameworks (MOFs). Two novel metal-organic frameworks (MOFs), {[Zn(2)(L)(OH)]·2DMF·H(2)O}(∞) (1) and {[Cu(L-H)(DMA)]·DMA·2H(2)O}(∞) (2), have been constructed out of L-H(3), Zn(2+), and Cu(2+), respectively. 1 has a 2-fold interpenetrating three-dimensional framework formed by L connectors and the [Zn(2)(CO(2))(3)] secondary building units (SBUs). As for 1, it is worth pointing out that one μ(2)-OH group links two Zn atoms between two neighboring SBUs to produce interesting Zn-O-Zn zigzag chains in the structure. 2 has a two-dimensional grid sheet formed by L-H connectors and the typical paddle-wheel [Cu(2)(CO(2))(4)] SBUs. Two-dimensional (2D) sheets nest with each other, which finally forms a three-dimensional (3D) nested framework. Two MOFs are characterized by infrared (IR) spectroscopy, thermogravimetry, single-crystal and elemental analyses, and powder X-ray diffraction methods. Framework 1' exhibits high permanent porosity (Langmuir surface area = 848 m(2)/g), high thermal stability (up to 450 °C), highly active properties for Friedel-Crafts alkylation reaction, as well as the potential application for the CO(2) gas storage and luminescent material. The catalytic results reveal that 2' is indeed an efficient heterogeneous catalyst for olefin epoxidation reactions.  相似文献   

10.
The combination of zinc(II) nitrate with 1,3,5-(triscarboxyphenyl)benzene (H 3BTB) leads to five different microporous coordination polymers (MCPs). Two of these were previously known (MOF-177 and MOF-39), whereas polymer-induced heteronucleation was used in the discovery of three phases that have not been previously reported ( Zn/BTB ant, Zn/BTB tsx, and Zn/BTB dia). Modification of crystallization conditions allows for the bulk-scale synthesis of each of these MCPs. Zn/BTB ant and Zn/BTB tsx are each interpentrated 6,3-connected nets composed of the basic zinc carboxylate secondary building unit (SBU) and the tritopic linker BTB. The underlying noninterpenetrated net of Zn/BTB ant is derived for the net of anatase, whereas that of Zn/BTB tsx is the previously unreported "tsx" framework. Zn/BTB dia consists of an underlying diamondoid net in which four linear, trinuclear zinc hourglass SBUs are arranged about a central mu 4-oxo anion as the tetrahedral unit in the net and BTB further links the hourglass SBUs. Zn/BTB ant, Zn/BTB tsx, and MOF-177 are here defined as polymorphic frameworks in that each is composed of the same SBU and linker but differ in topology and thus pore structure. These frameworks may be called a polyreticular series by analogy to several reported isoreticular series. The effect of linker-linker interactions are discussed.  相似文献   

11.
Six new metal-organic frameworks [Cu(obba)(bimb)·(obbaH(2))](n) (1), [Cu(obba)(bimb)](n) (2), [Zn(2)(obba)(2)(bimb)(2)(DMF)(2)(H(2)O)(3.5)](n) (3), [Ni(3)(2,2',4,4'-bptcH)(2)(bimb)(2)(H(2)O)(2)·(H(2)O)(2)](n) (4), [Ni(2)(bimb)(3)(H(2)O)(6)·(aobtc)·(DMF)(2)·(H(2)O)(2)](n) (5) and [Cd(3,3',4,4'-bptcH(2))(H(2)O)·(bimb)](n) (6), were obtained by reactions of 4,4'-bis(1-imidazolyl)biphenyl (bimb) and multi-carboxylic acids of 4,4'-oxybis(benzoic acid) (obbaH(2)), 2,2',4,4'-biphenyltetracarboxylate acid (2,2',4,4'-bptcH(4)), azoxybenzene-3,3',5,5'-tetracarboxylic acid (aobtcH(4)), and 3,3',4,4'-biphenyltetracarboxylate acid (3,3',4,4'-bptcH(4)) with corresponding metal salts under hydro/solvothermal conditions, respectively. Complexes 1-3 have entangled structures with different topologies: 1 is a 3-fold interpenetrating NbO three-dimensional (3D) network; 2 is a 3-fold interpenetrating dmp 3D net; 3 is a 6-fold interpenetrating dia 3D chiral net containing rare 1D helical chains with the same handedness. Complex 4 is an uninodal 6-connected network with a Sch?fli symbol of (4(8)6(4)8(3)) based on the trinuclear Ni(II) subunits, while complexes 5 and 6 are 1D chains. Interestingly, compound 6 represents the rare example of MOFs that exhibit high photocatalytic activity for dye degradation under visible light and shows good stability towards photocatalysis. Complexes 3 and 6 exhibit intense blue emissions in the solid state at room temperature whereas 3 appears to be a good candidate of novel hybrid inorganic-organic NLO material.  相似文献   

12.
Chang Z  Zhang DS  Chen Q  Li RF  Hu TL  Bu XH 《Inorganic chemistry》2011,50(16):7555-7562
In our efforts toward rational design and systematic synthesis of 'pillar-layer' structure MOFs, three porous MOFs have been constructed based on [Zn(4)(bpta)(2)(H(2)O)(2)] (H(4)bpta = 1,1'-biphenyl-2,2',6,6'-tetracarboxylic acid) layers and three different bipyridine pillar ligands. The resulted MOFs show similar structures but different pore volume and window size depending on the length of pillar ligands which resulted in distinct gas adsorption properties. In the three MOFs, [Zn(4)(bpta)(2)(4,4'-bipy)(2)(H(2)O)(2)]·(DMF)(3)·H(2)O (1) (DMF = N,N'-dimethylformamide and 4,4'-bipy = 4,4'-bipyridine) reveals selective adsorption of H(2) over N(2) and O(2) as the result of narrow pore size. [Zn(4)(bpta)(2)(azpy)(2)(H(2)O)(2)]·(DMF)(4)·(H(2)O)(3) (2) and [Zn(4)(bpta)(2)(dipytz)(2)(H(2)O)(2)]·(DMF)(4)·H(2)O (3) (azpy =4,4'-azopyridine, dipytz = di-3,6-(4-pyridyl)-1,2,4,5-tetrazine) reveal pore structure change upon different activation conditions. In addition, the samples activated under different conditions show distinct adsorption behaviors of N(2) and O(2) gases. Furthermore, hydrogen adsorption properties of activated 1-3 were studied. The results indicated that the activation process could affect the hydrogen enthalpy of adsorption.  相似文献   

13.
Bo QB  Wang HY  Wang DQ  Zhang ZW  Miao JL  Sun GX 《Inorganic chemistry》2011,50(20):10163-10177
In attempts to investigate whether the photoluminescence properties of the Zn-based heterometal-organic frameworks (MOFs) could be tuned by doping different Ln(3+) (Ln = Sm, Eu, Tb) and Mn(2+) ions, seven novel 3D homo- and hetero-MOFs with a rich variety of network topologies, namely, [Zn(mip)](n) (Zn-Zn), [Zn(2)Mn(OH)(2)(mip)(2)](n) (Zn-Mn), [Mn(2)Mn(OH)(2)(mip)(2)](n) (Mn-Mn), [ZnSm(OH)(mip)(2)](n) (Zn-Sm), [ZnEu(OH)(mip)(2)](n) (Zn-Eu1), [Zn(5)Eu(OH)(H(2)O)(3)(mip)(6)·(H(2)O)](n) (Zn-Eu2), and [Zn(5)Tb(OH)(H(2)O)(3)(mip)(6)](n) (Zn-Tb), (mip = 5-methylisophthalate dianion), have been synthesized hydrothermally based on a single 5-methylisophthalic acid ligand. All compounds are fully structurally characterized by elemental analysis, FT-IR spectroscopy, TG-DTA analysis, single-crystal X-ray diffraction, and X-ray powder diffraction (XRPD) techniques. The various connectivity modes of the mip linkers generate four types of different structures. Type I (Zn-Zn) is a 3D homo-MOF with helical channels composed of Zn(2)(COO)(4) SBUs (second building units). Type II (Zn-Mn and Mn-Mn) displays a nest-like 3D homo- or hetero-MOF featuring window-shaped helical channels composed of Zn(4)Mn(2)(OH)(4)(COO)(8) or Mn(4)Mn(2)(OH)(4)(COO)(8) SBUs. Type III (Zn-Sm and Zn-Eu1) presents a complicated corbeil-like 3D hetero-MOF with irregular helical channels composed of (SmZnO)(2)(COO)(8) or (EuZnO)(2)(COO)(8) heterometallic SBUs. Type IV (Zn-Eu2 and Zn-Tb) contains a heterometallic SBU Zn(5)Eu(OH)(COO)(12) or Zn(5)Tb(OH)(COO)(12), which results in a 3D hetero-MOF featuring irregular channels impregnated by parts of the free and coordinated water molecules. Photoluminescence properties indicate that all of the compounds exhibit photoluminescence in the solid state at room temperature. Compared with a broad emission band at ca. 475 nm (λ(ex) = 380 nm) for Zn-Zn, compound Zn-Mn exhibits a remarkably intense emission band centered at 737 nm (λ(ex) = 320 nm) due to the characteristic emission of Mn(2+). In addition, the fluorescence intensity of compound Zn-Mn is stronger than that of Mn-Mn as a result of Zn(2+) behaving as an activator for the Mn(2+) emission. Compound Zn-Sm displays a typical Sm(3+) emission spectrum, and the peak at 596 nm is the strongest one (λ(ex) = 310 nm). Both Zn-Eu1 and Zn-Eu2 give the characteristic emission transitions of the Eu(3+) ions (λ(ex) = 310 nm). Thanks to the ambient different crystal-field strengths, crystal field symmetries, and coordinated bonds of the Eu(3+) ions in compounds Zn-Eu1 and Zn-Eu2, the spectrum of the former compound is dominated by the (5)D(0) → (7)F(2) transition (612 nm), while the emission of the (5)D(0) → (7)F(4) transition (699 nm) for the latter one is the most intense. Compound Zn-Tb emits the characteristic Tb(3+) ion spectrum dominated by the (5)D(4) → (7)F(5) (544 nm) transition. Upon addition of the different activated ions, the luminescence lifetimes of the compounds are also changed from the nanosecond (Zn-Zn) to the microsecond (Zn-Mn, Mn-Mn, and Zn-Sm) and millisecond (Zn-Eu1, Zn-Eu2, and Zn-Tb) magnitude orders. The structure and photoluminescent property correlations suggest that the presence of Mn(2+) and Ln(3+) ions can activate the Zn-based hetero-MOFs to emit the tunable photoluminescence.  相似文献   

14.
Cationic and mixed-valent forms of Fe3O(CO2)6 trigonal prismatic clusters have been linked by ditopic links, namely, 1,4-benzenedicarboxylate (1,4-BDC) and 1,3-benzenedicarboxylate (1,3-BDC), to produce two 3-periodic metal-organic frameworks (MOFs), [Fe3O(1,4-BDC)3 (DMF)3][FeCl4] x (DMF)3 (MOF-235) and Fe3O(1,3-BDC)3 (py)3 x (py)0.5(H2O)1.5 (MOF-236) (DMF = N,N-dimethylformamide, py = pyridine), respectively. These MOFs exemplify a new, high-symmetry topology termed acs which we identify here as the default arrangement for linking trigonal prisms together.  相似文献   

15.
Wu CD  Ma L  Lin W 《Inorganic chemistry》2008,47(24):11446-11448
Hierarchically ordered homochiral metal-organic frameworks were built from the Cu(II) connecting point and the new (R)-6,6'-dichloro-2,2'-diethoxy-1,1'-binaphthyl-4,4'-bis(p-ethynylpyridine) bridging ligand (L). [Cu(3)L(4)(DMF)(6)(H(2)O)(3)(ClO(4))][ClO(4)](5).10DMF.10EtOH.7H(2)O (1) adopts a unique three-dimensional framework structure via simultaneous interlocking and interpenetration of one-dimensional ladders formed by linking rectangles of 24.8 x 48.6 A(2) in dimensions, whereas [Cu(3)L(5)(DMF)(8)][ClO(4)](6).6DMF.8EtOH.Et(2)O.6H(2)O (2) exhibits an interesting network topology by threading two-dimensional coordination square grids with one-dimensional coordination polymers.  相似文献   

16.
A series of silicon-centered connecting units, Me(n)Si(p-C6H4CO2H)(4-n) (n = 0, 1, 2), have been prepared and their coordination polymers with Zn(II) metal atoms studied. The tetra-acid L1 (n = 0) acts as a tetrahedral node and reacts with Zn(II) centers to give 1, a novel interpenetrating 3D network containing distorted tetrahedral bimetallic secondary building units (SBUs). The triacid L2 (n = 1) acts as a trigonal pyramidal node and forms an intercalated 2D layered network, 2, with Zn(II) ions, containing distorted octahedral tetranuclear SBUs. Last, the bent diacid L3 (n = 2) reacts with Zn(II) centers to give 3, a corrugated 2D layered structure containing 1D zinc hydroxo chains. Together these three new coordination polymers demonstrate the potential versatility of tetravalent silicon containing connecting ligands for metal-organic framework construction.  相似文献   

17.
Two metal-organic frameworks (MOFs), MOF-501 and MOF-502, respectively, formulated as Co(2)(BPTC)(H(2)O)(5).G(x) and Co(2)(BPTC)(H(2)O)(DMF)(2).G(x) (BPTC = 3,3',5,5'-biphenyltetracarboxylate; G = guest molecules), have been synthesized and structurally characterized, and their topologies were found to be based on the NbO (MOF-501) and PtS (MOF-502) nets. Heating MOF-501 in solution results in the more thermodynamically favored MOF-502.  相似文献   

18.
We report the synthesis of layered [Zn(2)(bdc)(2)(H(2)O)(2)] and [Cu(2)(bdc)(2)(H(2)O)(2)] (bdc = benzdicarboxylate) metal-organic frameworks (MOF) carried out using the liquid-phase epitaxy approach employing self-assembled monolayer (SAM) modified Au-substrates. We obtain Cu and Zn MOF-2 structures, which have not yet been obtained using conventional, solvothermal synthesis methods. The 2D Cu(2+) dimer paddle wheel planes characteristic for the MOF are found to be strictly planar, with the planes oriented perpendicular to the substrate. Intercalation of an organic dye, DXP, leads to a reversible tilting of the planes, demonstrating the huge potential of these surface-anchored MOFs for the intercalation of large, planar molecules.  相似文献   

19.
Metal-organic frameworks (MOFs), {[Cu(2)(bdcppi)(dmf)(2)]·10DMF·2H(2)O}(n) (SNU-50) and {[Zn(2)(bdcppi)(dmf)(3)]·6DMF·4H(2)O}(n) (SNU-51), have been prepared by the solvothermal reactions of N,N'-bis(3,5-dicarboxyphenyl)pyromellitic diimide (H(4)BDCPPI) with Cu(NO(3))(2) and Zn(NO(3))(2), respectively. Framework SNU-50 has an NbO-type net structure, whereas SNU-51 has a PtS-type net structure. Desolvated solid [Cu(2)(bdcppi)](n) (SNU-50'), which was prepared by guest exchange of SNU-50 with acetone followed by evacuation at 170 °C, adsorbs high amounts of N(2), H(2), O(2), CO(2), and CH(4) gases due to the presence of a vacant coordination site at every metal ion, and to the presence of imide groups in the ligand. The Langmuir surface area is 2450 m(2) g(-1). It adsorbs H(2) gas up to 2.10 wt% at 1 atm and 77 K, with zero coverage isosteric heat of 7.1 kJ mol(-1), up to a total of 7.85 wt% at 77 K and 60 bar. Its CO(2) and CH(4) adsorption capacities at 298 K are 77 wt% at 55 bar and 17 wt% at 60 bar, respectively. Of particular note is the O(2) adsorption capacity of SNU-50' (118 wt% at 77 K and 0.2 atm), which is the highest reported so far for any MOF. By metal-ion exchange of SNU-51 with Cu(II), {[Cu(2)(bdcppi)(dmf)(3)]·7DMF·5H(2)O}(n) (SNU-51-Cu(DMF)) with a PtS-type net was prepared, which could not be synthesized by a direct solvothermal reaction.  相似文献   

20.
Ozutsumi K  Taguchi Y  Kawashima T 《Talanta》1995,42(4):535-541
The complexation of urea (ur) with manganese(II), nickel(II) and zinc(II) ions has been studied by titration calorimetry in N,N-dimethylformamide (DMF) containing 0.4M (C(2)H(5))(4) NBF(4) as a constant ionic medium at 25 degrees C. The calorimetric data were well explained in terms of the formation of [Mn(ur)](2+), [Mn(ur)(2)](2+) and [Mn(ur)(4)](2+) for manganese(II), [Ni(ur)](2+) for nickel(II) and [Zn(ur)](2+) and [Zn(ur)(2)](2+) for zinc(II), and their formation constants, reaction enthalpies and entropies were determined. The complexation of the nickel(II)-urea system in DMF has also been studied by means of spectrophotometric titration and electronic spectra of individual nickel(II) complexes were determined. On the basis of the stepwise thermodynamic quantities and the individual electronic spectra of the complexes, it is revealed that the [Mn(ur)](2+), [Mn(ur)(2)](2+), [Ni(ur)](2+), [Zn(ur)](2+) and [Zn(ur)(2)](2+) complexes have a six-coordinate octahedral structure, while the [Mn(ur)(4)](2+) complex has a four-coordinate tetrahedral structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号