首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
运用电化学阻抗谱(EIS)和循环伏安法(CV)研究了在1mol/LLiPF6-EC(碳酸乙烯酯):DMC(碳酸二甲酯)电解液中添加Li2CO3对石墨电极性能的影响及机制.CV研究结果表明,在1mol/LLiPF6-EC:DMC电解液中添加Li2CO3能够有效抑制石墨电极首次充放电过程中碳酸乙烯酯(EC)的单电子还原过程,即还原分解产生乙烯和碳酸锂的过程,进而改善石墨电极的电化学循环性能.EIS研究结果表明,在添加Li2CO3的1mol/LLiPF6-EC:DMC电解液中,石墨电极表面的固体电解质相界面膜(SEI膜)具有较强的黏弹性,可以更好地适应锂离子嵌入过程中石墨颗粒体积的微小变化,从而使锂离子的嵌入过程更容易进行.  相似文献   

2.
任彤  庄全超  郝玉婉  崔永丽 《化学学报》2016,74(10):833-838
六氟磷酸锂是目前商品化锂离子电池中使用最广泛的电解质锂盐,LiF和LiCl是除水和酸之外六氟磷酸锂产品中最重要的杂质.运用扫描电子显微镜(SEM)、充放电、循环伏安法(CV)以及电化学阻抗谱测试(EIS)等研究了LiF和LiCl对石墨电极电化学性能的影响.充放电结果表明,在1 mol/L LiPF6-EC:DEC:DMC电解液中添加饱和的LiF,可以显著提高石墨电极的充放电可逆容量并改善其循环性能,而在1 mol/L LiPF6-EC:DEC:DMC电解液中添加饱和的LiCl,虽也可提高石墨电极的首次充电容量,但严重恶化石墨电极的充放电循环稳定性.CV结果表明,电解液中LiF、LiCl的存在对EC的还原分解过程影响较小.但SEM和EIS的结果指示,LiF、LiCl对石墨电极表面SEI膜的形成过程影响较大.在添加饱和LiF的电解液中石墨电极表面形成的SEI膜较薄且电阻较小,进而提高了石墨电极的可逆循环容量及改善了其循环稳定性;但在饱和的LiCl电解液中石墨电极表面形成的SEI膜较厚且电阻较大,严重恶化石墨电极的电化学循环稳定性.  相似文献   

3.
合成锂离子电池新型电解质锂盐L iBOB,并与PC/DEC溶剂配成电解液.室温下研究了L iBOB-PC/DEC电解液电导率随锂盐浓度的变化规律及其用于L i/ARG电池充放电循环性能的最佳组成配比,为0.5mol.L-1L iBOB-PC/DEC(3∶7).应用交流阻抗和循环伏安法研究了该最佳电解液的电化学性质及其电极/界面状态,结果显示,石墨电极在这种电解液中可形成良好的SEI膜.  相似文献   

4.
温度对石墨电极性能的影响   总被引:1,自引:0,他引:1  
运用电化学阻抗谱(EIS)并结合循环伏安法(CV)研究了石墨电极25和60 ℃时在1 mol·L-1 LiPF6-EC(碳酸乙烯酯):DEC(碳酸二乙酯):DMC(碳酸二甲酯)电解液中, 以及60 ℃时在1 mol·L-1 LiPF6-EC:DEC:DMC+5%VC(碳酸亚乙烯酯)电解液中的首次阴极极化过程. 发现高温下(60 ℃)石墨电极在1 mol·L-1 LiPF6-EC:DEC:DMC电解液中可逆循环容量衰减的主要原因在于其表面无法形成稳定的固体电解质相界面(SEI)膜. 实验结果显示, VC添加剂能够增进高温下石墨电极表面SEI膜的稳定性, 进而改进石墨电极的循环性能.  相似文献   

5.
丁磺酸内酯对锂离子电池性能及负极界面的影响   总被引:5,自引:0,他引:5  
用循环伏安(CV)、电化学阻抗谱(EIS)、扫描电镜(SEM)、能谱分析(EDS)及理论计算等方法研究了添加剂丁磺酸内酯(BS)对锂离子电池负极界面性质的影响. 研究表明, 在初次循环过程中, BS具有较低的最低空轨道能量, 优先于溶剂在石墨电极上还原分解, 并形成固体电解质相界面膜(SEI膜). 在含BS的电解液中形成的SEI膜的热稳定性高, 在70 ℃下储存24 h后, 膜电阻和电荷迁移电阻大小基本保持不变, 而在不含BS的电解液中形成的SEI膜的热稳定性较差, 在70 ℃下储存24 h后, 膜电阻和电荷迁移电阻大小有明显的增加. 从BS对锂离子电池电化学性能影响的研究表明, 加入少量的BS能够显著提高锂离子电池的室温放电容量、低温及高温储存放电性能.  相似文献   

6.
采用半池考察了Pt/C催化剂在含不同浓度甲醇的0.5mol/L硫酸中的氧还原活性(ORR).研究发现,当甲醇浓度为0.1mol/L时,Pt/C催化剂的ORR活性最高,在催化层上热压商品NafionNRE-212膜后也出现同样趋势.线性扫描伏安曲线显示,压膜前后的Pt/C催化剂的ORR活性在含0.1mol/L甲醇的0.5mol/L硫酸中几乎没有变化.电化学阻抗谱结果表明,在该溶液中,Nafion膜的电阻比在其它电解液中低,这可能是导致Pt/C催化剂ORR活性提高的主要原因.有必要关注Nafion膜的这一异常性质并通过特殊设计后用于电池堆,以提高燃料电池性能.  相似文献   

7.
二氧化碳(CO2)排放导致了严重的温室效应, 但作为重要的碳资源, CO2电催化还原合成化学品因反应条件温和、 反应产物可调及可有效利用分布式电能等优势而备受关注. 在该反应体系中, 电解液作为反应介质, 可提供质子和反应微环境, 影响分子/离子传输. 因此, 构建新型电解液体系对于提高CO2电催化还原产物的选择性和电流密度起到重要作用. 本文综合评述了CO2电催化还原过程中电解液的作用和研究现状, 重点总结了水系电解液中阴阳离子(碱金属阳离子、 卤素离子等)和离子液体电解液对CO2溶解度、 界面双电层结构(pH值、 电场效应)和中间体稳定性等的影响机制, 揭示了其调控对反应产物的选择性、 电流密度等的影响规律. 最后, 对电解液调控CO2电催化还原性能的研究进行了展望.  相似文献   

8.
采用液相共混的方法制备了ZSM-5分子筛填充壳聚糖膜.扫描电镜表征表明分子筛在膜中分散均匀,膜表面没有明显缺陷.考察了填充膜在碳酸二甲酯/甲醇混合液中的溶胀和吸附行为,探讨了填充膜中分子筛含量及操作温度对渗透汽化膜分离性能的影响.结果表明膜优先吸附甲醇,其分离性能主要由溶解过程控制;随着膜中分子筛含量的增加,膜的溶胀度增大,渗透通量大幅度提高;渗透通量与操作温度符合Arrhenius关系式.与壳聚糖均质膜相比,ZSM-5分子筛填充壳聚糖膜对甲醇和碳酸二甲酯混合物具有更好的分离效果.  相似文献   

9.
采用差热-热重(TG-DTA)、恒电流充放电和交流阻抗(EIS)分析了二氟草酸硼酸锂(LiODFB)的热稳定性,研究了LiODFB/碳酸乙烯酯(EC)+碳酸二甲酯(DMC)电解液的电化学性能及界而特征.实验结果表明,LiODFB不仅具有更高的热稳定性,而且在EC+DMC溶剂中具有较好的电化学性能.与使用LiPF6/EC+DMC的电解液相比,锂离子电池应用LiODFB基电解液在55℃的高温具有更好的容量保持能力;以0.5C、1C(1C=250 mA·g-1)倍率循环放电,两种电池间的倍率性能差别较小;LiODFB能够在1.5 V(vs Li/Li+)左右在石墨电极表面还原形成一个优异稳定的保护性固体电解质相界面膜(SEI膜);交流阻抗表明,使用LiODFB基电解液的锂离子电池仅具有稍微增加的界面阻抗.因此LiODFB是一种非常有希望替代LiPF6用作锂离子电池的新盐.  相似文献   

10.
采用差热-热重(TG-DTA)、恒电流充放电和交流阻抗(EIS)分析了二氟草酸硼酸锂(LiODFB)的热稳定性, 研究了LiODFB/碳酸乙烯酯(EC)+碳酸二甲酯(DMC)电解液的电化学性能及界面特征. 实验结果表明, LiODFB不仅具有更高的热稳定性, 而且在EC+DMC溶剂中具有较好的电化学性能. 与使用LiPF6/EC+DMC的电解液相比, 锂离子电池应用LiODFB基电解液在55 ℃的高温具有更好的容量保持能力; 以0.5C、1C(1C=250 mA·g-1)倍率循环放电, 两种电池间的倍率性能差别较小; LiODFB能够在1.5 V(vs Li/Li+)左右在石墨电极表面还原形成一个优异稳定的保护性固体电解质相界面膜(SEI膜); 交流阻抗表明, 使用LiODFB基电解液的锂离子电池仅具有稍微增加的界面阻抗. 因此LiODFB是一种非常有希望替代LiPF6用作锂离子电池的新盐.  相似文献   

11.
锂离子电池电解液从制造完成到使用,一般都会经历灌装、运输和贮存的过程,了解长期贮存过程对锂离子电池电解液性能的影响,对锂离子电池的生产具有一定的理论指导意义.本文运用电化学阻抗谱(EIS)测试并结合循环伏安法(CV)测试、充放电测试、扫描电子显微镜(SEM)等研究了1 mol.L-1 LiPF6-EC:EMC 基础电解...  相似文献   

12.
锂离子电池日益广泛的应用对其性能提出越来越高的要求,而在电解液中加入适当的添加剂能够显著提升电极材料的电化学性能. 本文首次在1 mol·L-1 LiPF6/EC + DMC + EMC(体积比1:1:1)的电解液中添加一定量的二氟草酸硼酸钠(NaDFOB),并通过循环伏安(CV)、电化学阻抗图谱(EIS)和扫描电子显微镜(SEM)等分析考察了其对石墨负极材料性能的具体影响. 结果显示,添加NaDFOB的电解液显著提高了石墨材料在常温下的可逆充放电容量和循环性能,同时明显改善了石墨材料的高温循环性能. 其机理在于NaDFOB的阴阳离子同时参与了石墨表面固体电解质界面膜(SEI)的形成,形成高稳定性的电解液/电极界面.  相似文献   

13.
二氟二草酸硼酸锂对LiFePO4/石墨电池高温性能的影响   总被引:2,自引:0,他引:2  
研究了二氟二草酸硼酸锂(LiODFB)作为锂盐加入到碳酸丙烯酯(PC)+碳酸乙烯酯(EC)+碳酸甲乙酯(EMC)(质量比为1:1:3)混合溶剂中对LiFePO4/石墨电池高温(60 ℃)循环性能的影响. 用线性扫描伏安法(LSV)测试了电解液的电化学窗口. 通过等离子发射光谱(ICP)和能量散射光谱(EDS)对LiFePO4材料高温条件下在不同电解液中的稳定性进行了研究; 并用扫描电镜(SEM)和电化学交流阻抗谱(EIS)分析了石墨负极表面的固体电解液相界面(SEI)膜的热稳定性. 结果表明: 一方面LiODFB基电解液能抑制LiFePO4材料在高温条件下Fe(II)的溶解, 防止溶解的Fe(II)在石墨上还原, 有效地降低电池阻抗; 另一方面, 在LiODFB基电解液中形成的石墨负极表面SEI膜具有更好的热稳定性, 能显著提高LiFePO4/石墨电池的高温循环性能.  相似文献   

14.
As an important component in electrodes, the choice of an appropriate binder is significant when fabricating lithium-ion batteries (LIBs) with good cycle stability and rate capability, which are used in numerous applications, especially portable electronics and eco-friendly electric vehicles (EVs). Semi-crystalline poly(vinylidene fluoride) (PVDF), which is a traditional and widely used binder, cannot efficiently accommodate the volume changes observed in the anode during the charge-discharge process while binding all the components in the electrode together, which results in increased internal cell resistance, detachment of the electrode components, and capacity fading. Herein, we have investigated a highly polar and elastomeric polyacrylonitrile-butadiene (NBR) rubber for use as a binder in LIBs, which can accommodate graphite particles of different shapes compared to semi-crystalline PVDF. Prior to our electrochemical tests, NBR was analyzed using thermogravimetric analysis (TGA) and X-ray diffraction (XRD), showing good thermal stability and an amorphous morphology. NBR is more conformable to irregular surfaces, which results in the formation of a homogeneous passivation layer on both spherical and flaky graphite particles to effectively suppress any electrolyte side reactions, further allowing more uniform and fast Li ion diffusion at the electrolyte/electrolyte interface. As a result, the electrochemical performance of both spherical and flaky shape graphite electrodes was significantly improved in terms of their first cycle Coulombic efficiency (CE) and cycle stability. With comparative specific capacity, the first cycle CE of the NBR-based spherical and flaky graphite electrodes were 87.0% and 85.5%, compared to 85.3% and 82.6% observed for their corresponding PVDF-based electrodes, respectively. After 1000 discharge-charge cycles at 1C, the capacity retention of the NBR-based graphite electrodes was significantly higher than that of PVDF-based electrodes. This was attributed to the good stability of the solid electrolyte interphase (SEI) formed on the graphite electrodes and the high stretching ability of the elastomeric NBR binder, which help to accommodate the repeated volume fluctuation of graphite observed during long-term charge-discharge cycling. Electrochemical impedance spectroscopy (EIS) and microscopic analysis (SEM and TEM) were carried out to investigate the formation and evolution of the SEI layers formed on the spherical and flaky graphite electrodes. The results show that thin, homogeneous, and stable SEI layers are formed on the surface of both spherical and flaky graphite electrodes prepared using the NBR binder. When compared to the PVDF-based graphite electrodes, the graphite electrodes constructed using NBR showed decreased resistance in the SEI layer and faster charge transfer, thus enhancing the electrode kinetics for Li ion intercalation/deintercalation. Our study shows that the electrochemical performance of spherical and flaky graphite electrodes prepared using the NBR binder is significantly improved, demonstrating that NBR is a promising binder for these electrodes in LIBs.  相似文献   

15.
Solid electrolyte interphase (SEI) film formation on graphite electrodes was studied on highly oriented pyrolytic graphite (HOPG) in nonaqueous electrolyte by in situ electrochemical atomic force microscopy (AFM). For potentials negative to 0.7 V versus Li|Li+ a SEI film is formed on the HOPG electrode surface. After the first cycle the film is rough and covers the surface of the HOPG electrode only partially. After the second cycle the HOPG surface is fully covered by a compact film. The thickness of the SEI film was measured by increasing the pressure of the AFM tip and thus scraping a part of the electrode surface. In this way a thickness of about 25 nm was found for the SEI film formed after two scan cycles between 3 and 0.01 V versus Li|Li+.  相似文献   

16.
卞锋菊  张忠如  杨勇 《电化学》2013,19(4):355-360
本文通过磷酸铁锂/碳电池研究了电解液添加剂氟代乙烯碳酸酯(FEC)对电池低温性能的影响. 电池充放电实验证明,FEC添加剂能够在负极表面形成良好的固体电解质界面层(SEI). 电解液中添加5% FEC后,电池-40 oC低温放电容量保持率可以从31.7%提高至43.7%,还提高了电池放电电压平台. 交流阻抗测试表明,FEC的加入能够有效降低电池的界面传荷阻抗(Rct). 参比电极测试表明,其主要是降低了碳负极的低温极化.  相似文献   

17.
磷酸三甲酯和碳酸亚乙烯酯对锂离子电池的复合作用   总被引:1,自引:0,他引:1  
应用循环伏安、交流阻抗、扫描电子显微镜和锂离子电池性能检测装置研究了阻燃添加剂磷酸三甲酯(TMP)和成膜添加剂碳酸亚乙烯酯(VC)对锂离子电池的复合作用.结果表明,复合使用TMP和VC不仅能提高电池的安全性而且能改善电池的循环性能,原因可能是在电池首次充放电过程中VC优先还原,还原产物在负极表面聚合形成良好的SEI膜,有效地制约了因TMP在石墨负极表面的分解而造成负极石墨的脱落,同时提高了SEI膜的稳定性.  相似文献   

18.
Under low temperature (LT) conditions (−80 °C∼0 °C), lithium-ion batteries (LIBs) may experience the formation of an extensive solid electrolyte interface (SEI), which can cause a series of detrimental effects such as Li+ deposition and irregular dendritic filament growth on the electrolyte surface. These issues ultimately lead to the degradation of the LT performance of LIBs. As a result, new electrode/electrolyte materials are necessary to address these challenges and enable the proper functioning of LIBs at LT. Given that most electrochemical reactions in lithium-ion batteries occur at the electrode/electrolyte interface, finding solutions to mitigate the negative impact caused by SEI is crucial to improve the LT performance of LIBs. In this article, we analyze and summarize the recent studies on electrode and electrolyte materials for low temperature lithium-ion batteries (LIBs). These materials include both metallic materials like tin, manganese, and cobalt, as well as non-metallic materials such as graphite and graphene. Modified materials, such as those with nano or alloying characteristics, generally exhibit better properties than raw materials. For instance, Sn nanowire-Si nanoparticles (SiNPs−In-SnNWs) and tin dioxide carbon nanotubes (SnO2@CNT) have faster Li+ transport rates and higher reversible capacity at LT. However, it′s important to note that when operating under LT, the electrolyte may solidify, leading to difficulty in Li+ transmission. The compatibility between the electrolyte and electrode can affect the formation of the solid electrolyte interphase (SEI) and the stability of the electrode/electrolyte system. Therefore, a good electrode/electrolyte system is crucial for successful operation of LIBs at LT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号