首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have calculated new potential-energy surfaces for the lowest two spin-aligned (4)A(') states of the Li(3) trimer. This calculation shows a seam of conical intersections between these states resulting from the extra symmetry of the system when the atoms are in a collinear arrangement. This seam is especially important because of its proximity to the three-body dissociation limit of the system; ultracold scattering calculations and the bound-state energies of the system will be affected by the presence of this conical intersection. In this paper we discuss the calculation of the potential-energy surface and the location of the conical intersection seam.  相似文献   

2.
A potential energy surface for the lowest quartet electronic state ((4)A(')) of lithium trimer is developed and used to study spin-polarized Li+Li(2) collisions at ultralow kinetic energies. The potential energy surface allows barrierless atom exchange reactions. Elastic and inelastic cross sections are calculated for collisions involving a variety of rovibrational states of Li(2). Inelastic collisions are responsible for trap loss in molecule production experiments. Isotope effects and the sensitivity of the results to details of the potential energy surface are investigated. It is found that for vibrationally excited states, the cross sections are only quite weakly dependent on details of the potential energy surface.  相似文献   

3.
A simple model electronic Hamiltonian to describe the potential energy surfaces of several low-lying d-d states of the [Fe(bpy)(3)](2+) complex is developed for use in molecular dynamics (MD) simulation studies. On the basis of a method proposed previously for first-row transition metal ions in aqueous solution, the model Hamiltonian is constructed using density functional theory calculations for the lowest singlet and quintet states. MD simulations are then carried out for the two spin states in aqueous solution in order to examine the performance of the model Hamiltonian. The simulation results indicate that the present model electronic Hamiltonian reasonably describes the potential energy surfaces of the two spin states of the aqueous [Fe(bpy)(3)](2+) system, while retaining sufficient simplicity for application in simulation studies on excited state dynamics.  相似文献   

4.
Adiabatic potential energy surfaces for the six lowest singlet electronic states of N(2)O (X (1)A('), 2 (1)A('), 3 (1)A('), 1 (1)A("), 2 (1)A(") and 3 (1)A(")) have been computed using an ab initio multireference configuration interaction (MRCI) method and a large orbital basis set (aug-cc-pVQZ). The potential energy surfaces display several symmetry related and some nonsymmetry related conical intersections. Total photodissociation cross sections and product rotational state distributions have been calculated for the first ultraviolet absorption band of the system using the adiabatic ab initio potential energy and transition dipole moment surfaces corresponding to the lowest three excited electronic states. In the Franck-Condon region the potential energy curves corresponding to these three states lie very close in energy and they all contribute to the absorption cross section in the first ultraviolet band. The total angular momentum is treated correctly in both the initial and final states. The total photodissociation spectra and product rotational distributions are determined for N(2)O initially in its ground vibrational state (0,0,0) and in the vibrationally excited (0,1,0) (bending) state. The resulting total absorption spectra are in good quantitative agreement with the experimental results over the region of the first ultraviolet absorption band, from 150 to 220 nm. All of the lowest three electronically excited states [(1)Sigma(-)(1 (1)A(")), (1)Delta(2 (1)A(')), and (1)Delta(2 (1)A("))] have zero transition dipole moments from the ground state [(1)Sigma(+)(1 (1)A('))] in its equilibrium linear configuration. The absorption becomes possible only through the bending motion of the molecule. The (1)Delta(2 (1)A('))<--X (1)Sigma(+)((1)A(')) absorption dominates the absorption cross section with absorption to the other two electronic states contributing to the shape and diffuse structure of the band. It is suggested that absorption to the bound (1)Delta(2 (1)A(")) state makes an important contribution to the experimentally observed diffuse structure in the first ultraviolet absorption band. The predicted product rotational quantum state distribution at 203 nm agrees well with experimental observations.  相似文献   

5.
Collisions of the vibrationally excited OH(v = 1) molecule with atomic oxygen are investigated theoretically using a coupled-states, statistical capture (CS-ST) model. Vibrational relaxation can occur by inelastic scattering, and the vibrationally excited molecule can also be removed by reaction to form O(2) in both the ground (X (3)Sigma(g)(-)) and first excited (a (1)Delta(g)) state. In the former case, reaction occurs on the lowest potential energy surface of (2)A(") symmetry, and, in the latter case, by reaction on the lowest potential energy surface of (2)A(') symmetry. We report new ab initio potential energy surfaces for both these states in the product and reactant regions necessary for application of the coupled-states, statistical method. Comparison with exact, reactive scattering calculations within the J-shifting approximation indicate that the CS-ST rate constants for removal of OH(v = 1) can be expected to be reasonably accurate. Our calculated rate constants at 300 K agree well with the experimental results of Khachatrian and Dagdigian [Chem. Phys. Lett. 415, 1 (2005)]. Reaction to yield O(2) (X (3)Sigma(g)(-)) is the dominant removal pathway. At subthermal temperatures, the rate constants for the various vibrational quenching processes all increase down to T approximately = 60 K and then decrease at lower temperature.  相似文献   

6.
We present a new theory of population transfer by adiabatic passage. This theory relates laser catalysis to adiabatic passage, enhancing chemical reactions with the freedom to choose the translational energies of the reactants and products separately. The process, A+BC<-->(Planck's over omega(p) )ABC*(v)<-->(Planck's over omega(s))AB+C, involves two laser fields that are slowly varying so the process is adiabatic, and sufficiently intense so the population of the intermediate bound complex (ABC) is minimized. We apply this theory to the collinear exchange reaction (6)Li+(7)Li(2)(T(r))<-->(Planck's over omega(p))((6)Li(7)Li(7)Li)*<-->(variant Planck's over 2piomega(s) ) (6)Li(7)Li(T(p))+(7)Li. We show that at translational energies T(p)=T(r)=1 mK with a narrow energy bandwidth of delta(E)=0.01 mK, we can obtain nearly total (> or =98%) population transfer from the reactant to the product states. This can be done with a pump laser and a Stokes laser in an "intuitive" sequence (t(p)相似文献   

7.
Multiple low-lying electronic states of M(3)O(9)(-) and M(3)O(9)(2-) (M = Mo, W) arise from the occupation of the near-degenerate low-lying virtual orbitals in the neutral clusters. We used density functional theory (DFT) and coupled cluster theory (CCSD(T)) with correlation consistent basis sets to study the structures and energetics of the electronic states of these anions. The adiabatic and vertical electron detachment energies (ADEs and VDEs) of the anionic clusters were calculated with 27 exchange-correlation functionals including one local spin density approximation functional, 13 generalized gradient approximation (GGA) functionals, and 13 hybrid GGA functionals, as well as the CCSD(T) method. For M(3)O(9)(-), CCSD(T) and nearly all of the DFT exchange-correlation functionals studied predict the (2)A(1) state arising from the Jahn-Teller distortion due to singly occupying the degenerate e' orbital to be lower in energy than the (2)A(1)' state arising from singly occupying the nondegenerate a(1)' orbital. For W(3)O(9)(-), the (2)A(1) state was predicted to have essentially the same energy as the (2)A(1)' state at the CCSD(T) level with core-valence correlation corrections included and to be higher in energy or essentially isoenergetic with most DFT methods. The calculated VDEs from the CCSD(T) method are in reasonable agreement with the experimental values for both electronic states if estimates for the corrections due to basis set incompleteness are included. For M(3)O(9)(2-), the singlet state arising from doubly occupying the nondegenerate a(1)' orbital was predicted to be the most stable state for both M = Mo and W. However, whereas M(3)O(9)(2-) was predicted to be less stable than M(3)O(9)(-), W(3)O(9)(2-) was predicted to be more stable than W(3)O(9)(-).  相似文献   

8.
Relaxation dynamics of photoexcited charge-transfer-to-solvent (CTTS) states for the I(-)(CH(3)CN)(n) (n = 2 and 3) clusters has been theoretically studied using electronic structure methods. First, we have calculated several lowest singlet and triplet potential energy surfaces using the multireference configuration interaction method. It was found that the character of the singlet CTTS excited-state potential surfaces is very similar to that of the triplet CTTS states. Due to a small singlet-triplet splitting, the lowest triplet potential energy surface was used as a good model to understand the dynamics of the photoexcited singlet CTTS states. We have carried out direct molecular dynamics simulations on the lowest triplet surface at the B3LYP level. When an I(-) anion is exteriorly solvated by CH(3)CN molecules, we found that the (CH(3)CN)(n)(-) anion cluster is effectively produced. In addition, when the I(-) anion is placed in the interior in I(-)(CH(3)CN)(n) clusters, photoexcitation gives an acetonitrile monomer anion plus neutral monomers. However, if the initial geometric configuration is distorted from the minimum structure, we also found that the (CH(3)CN)(2)(-) anion cluster, where an excess electron is internally trapped, is formed via I(-)(CH(3)CN)(2) + hnu --> I + (CH(3)CN)(2)(-) process.  相似文献   

9.
A new potential energy surface (PES) for the quintet state of rigid O(2)((3)Sigma(g)(-)) + O(2)((3)Sigma(g)(-)) has been obtained using restricted coupled-cluster theory with singles, doubles, and perturbative triple excitations [RCCSD(T)]. A large number of relative orientations of the monomers (65) and intermolecular distances (17) have been considered. A spherical harmonic expansion of the interaction potential has been built from the ab initio data. It involves 29 terms, as a consequence of the large anisotropy of the interaction. The spherically averaged term agrees quite well with the one obtained from analysis of total integral cross sections. The absolute minimum of the PES corresponds to the crossed (D(2d)) structure (X shape) with an intermolecular distance of 6.224 bohrs and a well depth of 16.27 meV. Interestingly, the PES presents another (local) minimum close in energy (15.66 meV) at 6.50 bohrs and within a planar skewed geometry (S shape). We find that the origin of this second structure is due to the orientational dependence of the spin-exchange interactions which break the spin degeneracy and leads to three distinct intermolecular PESs with singlet, triplet, and quintet multiplicities. The lowest vibrational bound states of the O(2)-O(2) dimer have been obtained and it is found that they reflect the above mentioned topological features of the PES: The first allowed bound state for the (16)O isotope has an X structure but the next state is just 0.12 meV higher in energy and exhibits an S shape.  相似文献   

10.
The total energies and various bound state properties are determined to very high accuracy for the ground 1 (1)S(L=0) states in some light two-electron ions, including the Li(+), Be(2+), B(3+), and C(4+) ions. The corrections due to the finite nuclear masses and lowest order QED corrections ( approximately alpha(3)) are considered/computed for each of these ions. In particular, the specific mass shift is determined for each of the Li(+), Be(2+), B(3+), and C(4+) ions. We also discuss the field shift related to the extended nuclear charge distribution.  相似文献   

11.
The (3)(1)Pi state of the NaCs molecule was studied by high resolution Fourier-transform spectroscopy. The (3)(1)Pi-->X (1)Sigma(+) laser induced fluorescence was excited by an Ar(+) ion laser or by a single-mode frequency-doubled cw Nd:YAG laser. The presence of argon buffer gas yielded rich rotational relaxation spectra allowing to enlarge the data set for the (3)(1)Pi state term values, as well as to observe Lambda splittings in a wide range of vibrational (v(')) and rotational (J(')) quantum numbers. The data field includes about 820 energy levels of (3)(1)Pi NaCs in the range from v(')=0 to 37 and from J(')=3 to 190, which corresponds to ca. 95% of the potential well depth. Direct fit of the potential energy curve to the level energies is realized using the inverted perturbation approach method; a set of Dunham coefficients is also presented.  相似文献   

12.
The following crystalline oligonuclear metal alkyls have been synthesised under mild conditions and structurally characterised: [(THF)Li(mu-A)(mu-Cl)(mu3-OMe)Zn]2, [Li(mu-A)2Tl]2(4 and 4'), [Li4(mu-A)3(micro3-OMe)]5, [(mu-A)Li2(mu-A)2(mu3-OMe)Ce(A)](6) and [Ce(A)(mu2-OMe){mu2-OS(O)(CF3)O}]2(11)[= CH(SiMe3){SiMe(OMe)2}]. Compounds 2-6 were obtained from [Li(mu-A)]infinity(1) and ZnCl2(3), TlCl (4 and 4' and 5) and CeCl3(6), and 11 was isolated from K(A)(prepared from 1 + KOBu(t)) and cerium(III) triflate Ce(OTf)3. The principal novel features are (i) and (ii) as follows. As for (i), the diversity of ligand-to-metal bonding is noteworthy, the ligand being (a)C,O-bridging in 3{as in the known compounds 1 and in [Li2Mg5(mu3-OMe)6(mu2-OMe)2(mu2-A)4](2)}; (b)C,O,O'-bridging and O,O'-chelating in 4 and 4'; (c)C,O,O'-bridging in 5; (d)C,O,O'-bridging and C,O-chelating in 6; and (e)C,O-chelating in 11. Regarding (ii), it is interesting that the ligand [A]- is surprisingly ready to undergo fragmentation by Si-OMe cleavage and thereby present bridging methoxy ligands (mu2-OMe)2 to a pair of Ce3+ ions in 11, or mu3-OMe acting as a cap for triangular arrays of three hard metal ions (Mg3 in 2, LiZn2 in 3, Li3 in 5, and Li2Ce in 6).  相似文献   

13.
Theoretical investigation of excited states of C(3)   总被引:1,自引:0,他引:1  
In this work, we present ab initio calculations for the potential energy surfaces of C(3) in different electronic configurations, including the singlet ground state [X (1)Sigma(g) (+),((1)A(1))], the triplet ground state [a (3)Pi(u),((3)B(1), (3)A(1))], and some higher excited states. The geometries studied include triangular shapes with two identical bond lengths, but different bond angles between them. For the singlet and triplet ground states in the linear geometry, the total energies resulting from the mixed density functional--Hartree-Fock and quadratic configuration interaction methods reproduce the experimental values, i.e., the triplet occurs 2.1 eV above the singlet. In the geometry of an equilateral triangle, we find a low-lying triplet state with an energy of only 0.8 eV above the energy of the singlet in the linear configuration, so that the triangular geometry yields the lowest excited state of C(3). For the higher excited states up to about 8 eV above the ground state, we apply time-dependent density functional theory. Even though the systematic error produced by this approach is of the order of 0.4 eV, the results give different prospective to insight into the potential energy landscape for higher excitation energies.  相似文献   

14.
Low lying electronic states of the beryllium dimer were investigated by laser induced fluorescence (LIF) and resonance enhanced multiphoton ionization (REMPI) techniques. Be(2) was formed by pulsed laser ablation of Be metal in the presence of helium carrier gas, followed by a free jet expansion into vacuum. Several previously unobserved states of the dimer were characterized. These included transitions of the triplet manifold (2)(3)Pi(g) <-- (1)(3)Sigma(u)+ and (3)(3)Pi(g) <-- (1)(3)Sigma(u)+, for which rotationally resolved bands were obtained. In addition, transitions to the v' = 10-18 vibrational levels of the A (1)Pi(u) state were recorded. Photoionization efficiency (PIE) measurements were used to determine an accurate ionization energy (IE) for Be(2) of 7.418(5) eV and the term energy for (1)(3)Sigma(u)+. Above the ionization threshold the PIE spectrum was found to be highly structured, consisting of overlapping Rydberg series that converged on excited vibrational levels of Be(2)+. Analysis of these series yielded a vibration frequency for the X(2)Sigma(u)+ state of 498(20) cm(-1). The bond dissociation energy for Be(2)+, deduced from the IE measurement, was 16 072(40) cm(-1). Multi-reference configuration interaction (MRCI) calculations were carried out for Be(2) and Be(2)+, yielding results that were in excellent agreement with the experimental observations.  相似文献   

15.
Reduction at ambient temperature of each of the lithium benzamidinates [Li(L(1))(tmeda)] or [{Li(L(2))(OEt(2))(2)}(2)] with four equivalents of lithium metal in diethyl ether or thf furnished the brown crystalline [Li(3)(L(1))(tmeda)] (1) or [Li(thf)(4)][Li(5)(L(2))(2)(OEt(2))(2)] (2), respectively. Their structures show that in each the [N(R(1))C(R(3))NR(2)](3-) moiety has the three negative charges largely localised on each of N, N' and R = Aryl); a consequence is that the "aromatic" 2,3- and 5,6-CC bonds of R(3) approximate to being double bonds. Multinuclear NMR spectra in C(6)D(6) and C(7)D(8) show that 1 and 2 exhibit dynamic behaviour. [The following abbreviations are used: L(1) = N(SiMe(3))C(Ph)N(SiMe(3)); L(2) = N(SiMe(3))C(C(6)H(4)Me-4)N(Ph); tmeda = (Me(2)NCH(2)-)(2); thf = tetrahydrofuran.] This reduction is further supported by a DFT analysis.  相似文献   

16.
The spectroscopic constants for the ground (X (1)A(1)) and low-lying triplet and singlet excited states (a (3)A("),A (1)A("),B (1)A(')) of thiocarbonyl chlorofluoride (ClFCS) were obtained using the equation-of-motion coupled-cluster singles and doubles method. The calculated vibrational frequencies of the electronic states were within 4% of the experimental values for 21 of the frequencies, but four calculated frequencies were 20%-40% away from the corresponding experimentally reported values, suggesting the need to reexamine previous experimental spectra. The spectroscopic properties of the radical fragments (FCS, ClCS, and CClF) were also studied, and the correlation diagram between the excited electronic states of ClFCS and possible combinations of dissociation fragments were obtained. The potential energy surfaces (PESs) of the excited electronic states of ClFCS along possible dissociation pathways were also studied. The main qualitative dynamical features of the S(1)(A (1)A("))<--S(2)(B (1)A(')) fluorescence of ClFCS, which may occur in spite of the small barrier (8 kcalmol) on the S(2) PES to the dissociation of C-Cl bond, are discussed.  相似文献   

17.
We investigate the relaxation of photoexcited Li(2)(+) chromophores solvated in Ne(n) clusters (n = 2-22) by means of molecular dynamics with surface hopping. The simplicity of the electronic structure of these ideal systems is exploited to design an accurate and computationally efficient model. These systems present two series of conical intersections between the states correlated with the Li+Li(2s) and Li+Li(2p) dissociation limits of the Li(2)(+) molecule. Frank-Condon transition from the ground state to one of the three lowest excited states, hereafter indexed by ascending energy from 1 to 3, quickly drives the system toward the first series of conical intersections, which have a tremendous influence on the issue of the dynamics. The states 1 and 2, which originate in the Frank-Condon area from the degenerated nondissociative 1(2)Π(u) states of the bare Li(2)(+) molecule, relax mainly to Li+Li(2s) with a complete atomization of the clusters in the whole range of size n investigated here. The third state, which originates in the Frank-Condon area from the dissociative 1(2)Σ(u)(+) state of the bare Li(2)(+) molecule, exhibits a richer relaxation dynamics. Contrary to intuition, excitation into state 3 leads to less molecular dissociation, though the amount of energy deposited in the cluster by the excitation process is larger than for excitation into state 1 and 2. This extra amount of energy allows the system to reach the second series of conical intersections so that approximately 20% of the clusters are stabilized in the 2(2)Σ(g)(+) state potential well for cluster sizes n larger than 6.  相似文献   

18.
Energy transfer rate constants for Ne(2p(5)3p) and Kr(4p(5)5p) atoms colliding with ground state rare gas atoms (Rg) have been measured. In part, this study is motivated by the possibility of using excited rare gas atoms as the active species in optically pumped laser systems. Rg(np(5)(n + 1)s) metastable states may be produced using low-power electrical discharges. The potential then exits for optical pumping and laser action on the np(5)(n + 1)p ? np(5)(n + 1)s transitions. Knowledge of the rate constants for collisional energy transfer and deactivation of the np(5)(n + 1)p states is required to evaluate the laser potential for various Rg + buffer gas combinations. In the present study we have characterized energy transfer processes for Ne (2p(5)3p) + He for the six lowest energy states of the multiplet. Rate constants for state-to-state transfer have been determined. Deactivation of the lowest energy level of Kr (4p(5)5p) by He, Ne, and Kr has also been characterized. Initial results suggest that Kr (4p(5)5p) + Ne mixtures may be the best suited for optically pumped laser applications.  相似文献   

19.
The alluaudite lithiated phases Li(0.5)Na(0.5)MnFe(2)(PO(4))(3) and Li(0.75)Na(0.25)MnFe(2)(PO(4))(3) were prepared via a sol-gel synthesis, leading to powders with spongy characteristics. The Rietveld refinement of the X-ray and neutron diffraction data coupled with ab initio calculations allowed us for the first time to accurately localize the lithium ions in the alluaudite structure. Actually, the lithium ions are localized in the A(1) and A(1)' sites of the tunnel. M?ssbauer measurements showed the presence of some Fe(2+) that decreased with increasing Li content. Neutron diffraction revealed the presence of a partial Mn/Fe exchange between the two transition metal sites that shows clearly that the oxidation state of the element is fixed by the type of occupied site. The electrochemical properties of the two phases were studied as positive electrodes in lithium batteries in the 4.5-1.5 V potential window, but they exhibit smaller electrochemical reversible capacity compared with the non-lithiated NaMnFe(2)(PO(4))(3). The possibility of Na(+)/Li(+) ion deintercalation from (Na,Li)MnFe(2)(PO(4))(3) was also investigated by DFT+U calculations.  相似文献   

20.
A survey of the potential energy surface for a 1:1 copper dioxygen complex, (C(3)N(2)H(5))CuO(2), reveals two distinct states in the valence region, a singlet ((1)A(1)) and a triplet ((3)B(1)). The former spans a continuum from Cu(III)-O(2)(2-) to Cu(I)-O(2)((1)Delta(g)), while the latter spans Cu(II)-O(2)(1-) to Cu(I)-O(2)((3)Sigma(g)(-)). The point at which the potential energy curves for the two states cross marks an abrupt discontinuity in electron distribution, where the system shifts from dominant Cu(III)-O(2)(2-) character to Cu(II)-O(2)(1-). On this basis, we argue that there is no continuum between Cu(III)-peroxide and Cu(II)-superoxide: the two are represented by distinct states that differ both in symmetry and multiplicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号