首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel fluorescent probe for Cu2+ determination based on the fluorescence quenching of glyphosate (Glyp)-functionalized quantum dots (QDs) was firstly reported. Glyp had been used to modify the surface of QDs to form Glyp-functionalized QDs following the capping of thioglycolic acid on the core–shell CdTe/CdS QDs. Under the optimal conditions, the response was linearly proportional to the concentration of Cu2+ between 2.4 × 10−2 μg mL−1 and 28 μg mL−1, with a detection limit of 1.3 × 10−3 μg mL−1 (3δ). The Glyp-functionalized QDs fluorescent probe offers good sensitivity and selectivity for detecting Cu2+. The fluorescent probe was successfully used for the determination of Cu2+ in environmental samples. The mechanism of reaction was also discussed.  相似文献   

2.
A fluorometric method for quantity analysis of biothiols was developed using a graphene oxide (GO)-based “molecular beacon”-like probe, which consisted of FITC labeled thymine (T)-rich single-stranded DNA (ssDNA), GO and Hg2+ ions. The labeled ssDNA containing T–T mismatches would self-hybridize to duplex in the presence of Hg2+, which can avoid its adsorption on GO and the fluorescence of this GO-based probe was recovered. The fluorescence of the probe quenched after the addition of biothiols such as glutathione (GSH) and cysteine (Cys) owing to thiol groups can selectively competitive ligation of Hg2+ ions with T–T mismatches. In the present work, the GO-based probe was used for the determination of GSH and Cys. Under the optimal conditions, a linear correlation was established between fluorescence intensity ratio I0/I and the concentration of GSH in the range of 2.0 × 10−9–5.0 × 10−7 mol L−1 with a detection limit of 1.0 × 10−9 mol L−1. The linear range for Cys is from 5.0 × 10−9 to 4.5 × 10−7 mol L−1 with a detection limit of 2.0 × 10−9 mol L−1. The proposed method was applied to the determination of GSH in human serum and cell extract samples with satisfactory results.  相似文献   

3.
A novel dual-function material was synthesized by anchoring a molecularly imprinted polymer (MIP) layer on CdTe/ZnS quantum dots (QDs) using a sol–gel with surface imprinting. The material exhibited highly selective and sensitive determination of ractopamine (RAC) through spectrofluorometry and solid-phase extraction (SPE) coupled with high performance liquid chromatography (HPLC). A series of adsorption experiments revealed that the material showed high selectivity, good adsorption capacity and a fast mass transfer rate. Fluorescence from the MIP-coated QDs was more strongly quenched by RAC than that of the non-imprinted polymer, which indicated that the MIP-coated QDs acted as a fluorescence sensing material could recognize RAC. In addition, the MIP-coated QDs as a sorbent was also shown to be promising for SPE coupled with HPLC for the determination of trace RAC in feeding stuffs and pork samples. Under optimal conditions, the spectrofluorometry and SPE-HPLC methods using the MIP-coated QDs had linear ranges of 5.00 × 10−10–3.55 × 10−7 and 1.50 × 10−10–8.90 × 10−8 mol L−1, respectively, with limits of detection of 1.47 × 10−10 and 8.30 × 10−11 mol L−1, the relative standard deviations for six repeat experiments of RAC (2.90 × 10−9 mol L−1) were below 2.83% and 7.11%.  相似文献   

4.
We have developed a novel method for the determination of iodate based on the carboxymethyl cellulose-capped CdS quantum dots (QDs). Factors affecting the iodate detection were investigated, and the optimum conditions were determined. Under the optimum conditions, the relative fluorescence intensity of CdS quantum dots was linearly proportional to IO3 over a concentration range from 1.0 × 10−8 to 1.0 × 10−5 mol L−1 with a correlation coefficient of 0.9987 and a detection limit of 6.0 nmol L−1. Iodide, being oxidized by bromine to form iodate, was detected indirectly. The method was successfully applied to the determination of iodate and total amount of iodine in table salt samples. The related mechanism was also discussed.  相似文献   

5.
In this paper, the electrogenerated chemiluminescence (ECL) from thiol-capped CdTe quantum dots (QDs) was reported. The ECL emission was occurred at −1.1 V and reached a maximum value at −2.4 V when the potential was cycled between 0.0 and −2.5 V. The reduced species of CdTe QDs could react with the coreactants to produce the ECL emission. The CdTe QD concentration (6.64 × 10−7 mol L−1) of ECL is lower than that (1.0 × 10−3 mol L−1) of chemiluminescence (CL). Based on the enhancement of light emission from thiol-capped CdTe QDs by H2O2 in the negative electrode potential, a novel method for the determination of H2O2 was developed. The light intensity was linearly proportional to the concentration of H2O2 between 2.0 × 10−7 and 1.0 × 10−5 mol L−1 with a detection limit of 6.0 × 10−8 mol L−1. Compared with most of previous reports, the proposed method has higher sensitivity for the determination of H2O2. In addition, the ECL spectrum of thiol-capped CdTe QDs exhibited a peak at around 620 nm, which was substantially red shifted from the photoluminescence (PL) spectrum, suggesting the surface states play an important role in this ECL process.  相似文献   

6.
The fabrication and application of a novel electrochemical detection (ED) system with the platinum/poly(methyl violet) (Pt/MV) chemically modified electrode (CME) for high performance liquid chromatography (HPLC) were described. The Pt particles deposited on the poly-MV film were characterized by atomic force microscope (AFM). It was found that the Pt/MV CME exhibited efficiently electrocatalytic effect on the current responses of cysteine (Cys), homocysteine (Hcy) and methionine (Met) with relatively high sensitivity, stability and long-life of activity. In HPLC-ED, these three amino acids had good and stable current responses at the CME and their linear ranges were over three orders of magnitude (R ≥ 0.9996) with the detection limits being 7.5 × 10−8 mol L−1 for Cys, 1.0 × 10−7 mol L−1 for Hcy, 5.0 × 10−7 mol L−1 for Met. The application of this method coupled with microdialysis sampling for the determination of Cys, Hcy and Met in plasma from patients with hypothyroidism was satisfactory.  相似文献   

7.
Zhang F  Li C  Li X  Wang X  Wan Q  Xian Y  Jin L  Yamamoto K 《Talanta》2006,68(4):1353-1358
A reagentless amperometric uric acid biosensor based on zinc sulfide (ZnS) quantum dots (QDs) was firstly developed. It could detect uric acid without the presence of an electron mediator. The carboxyl group functionalized ZnS QDs were synthesized, and they were soluble biocompatible and conductive. ZnS QDs conjugates could provide increased enzyme binding sites, which may result in higher enzyme loading. Thus, the proposed uricase/ZnS QDs/l-cys biosensor exhibited higher amperometric response compared to the one without QDs (uricase/l-cys biosensor). In addition, there was little AA interference. It showed a linear dependence on the uric acid concentration ranging from 5.0 × 10−6 to 2.0 × 10−3 mol L−1 with a detection limit of 2.0 × 10−6 mol L−1 at 3σ.  相似文献   

8.
Based on the characteristics of synchronous fluorescence spectroscopy (SFS), a new method with high sensitivity and selectivity was developed for rapid determination of silver ion with functional cadmium sulphide (CdS) nanoparticles as a fluorescence probe. When Δλ (λem − λex) = 215 nm, maximum synchronous fluorescence is produced at 304 nm. Under optimal conditions, functional cadmium sulphide displayed a calibration response for silver ion over a wide concentration range from 0.8 × 10−10 to 1.5 × 10−8 mol L−1. The limit of detection was 0.4 × 10−10 mol L−1 and the relative standard deviation of seven replicate measurements for the lowest concentration (0.8 × 10−10 mol L−1) was 2.8%. Compared with several fluorescence methods, the proposed method had a wider linear range and improved the sensitivity. Furthermore, the concentration dependence of the synchronous fluorescence intensity is effectively described by a Langmuir-type binding isotherm.  相似文献   

9.
A novel method for the determination of peroxynitrite using folic acid as a fluorescent probe is described. The method is based on the oxidation of the reduced, low-fluorescent folic acid by peroxynitrite to produce a high-fluorescent emission product. The fluorescence increase is linearly related to the concentration of peroxynitrite in the range of 3 × 10−8 to 5.0 × 10−6 mol L−1 with a correlation coefficient of 0.998, and the detection limit is 1 × 10−8 mol L−1. Interferences from some metal ions normally seen in biological samples, and also some anions structurally similar to peroxynitrite were studied. The optimal conditions for the detection of peroxynitrite were evaluated.  相似文献   

10.
A novel method of first derivative synchronous fluorescence was developed for the rapid simultaneous analysis of trace 1-hydroxypyrene (1-OHP), 1-naphthol (1-NAP), 2-naphthol (2-NAP), 9-hydroxyphenanthrene (9-OHPe) and 2-hydroxyfluorene (2-OHFlu) in human urine. Only one single scan was needed for quantitative determination of five compounds simultaneously when Δλ = 10 nm was chosen. In the optimal experimental conditions, there was a linear relationship between the fluorescence intensity and the concentration of 1-OHP, 1-NAP, 2-NAP, 9-OHPe and 2-OHFlu in the range of 1.75 × 10−9 to 4.50 × 10−6 mol L−1, 3.64 × 10−8 to 2.20 × 10−4 mol L−1, 8.18 × 10−9 to 1.20 × 10−4 mol L−1, 3.26 × 10−9 to 8.50 × 10−5 mol L−1 and 4.88 × 10−9 to 5.50 × 10−6 mol L−1, respectively. The limits of detection (LOD) were found to be 5.25 × 10−10 mol L−1 for 1-OHP, 1.10 × 10−8 mol L−1 for 1-NAP, 2.46 × 10−9 mol L−1 for 2-NAP, 9.77 × 10−10 mol L−1 for 9-OHPe and 1.46 × 10−9 mol L−1 for 2-OHFlu. The proposed method is reliable, selective and sensitive, and has been used successfully in the determination of traces of 1-OHP, 1-NAP, 2-NAP, 9-OHPe and 2-OHFlu in human urine samples, whose results were in good agreement with those gained by the HPLC method.  相似文献   

11.
Wang X  Lv Y  Hou X 《Talanta》2011,84(2):382-386
The interaction between mercaptoacetic acid (MA)-capped CdTe QDs, MA-capped CdTe/ZnS QDs or glutathione (GSH)-capped CdTe QDs with As(III) was studied using fluorescence spectrometry. As (III) has a high-affinity to reduced-GSH to form As(SG)3, and the emission of the GSH-capped CdTe QDs (λem. = 612 nm) is quenched effectively. Thus, a novel fluorescence spectrometric method was developed for As (III) determination by using GSH-CdTe QDs. Under optimal conditions, the quenched fluorescence intensity (F0/F) increased linearly with the concentration of As (III) ranging from 5.0 × 10−6 to 25 × 10−5 mol L−1. The limit of detection (3σ) for As (III) was found to be 2 × 10−8 mol L−1. This method is potentially useful in visual detection of As (III) under irradiation of the ultraviolet light.  相似文献   

12.
Lijuan Hua  Xueji Zhang 《Talanta》2009,77(5):1654-4893
Water-soluble CdTe quantum dots (QDs) with five sizes (2.25, 2.50, 2.77, 3.12, and 3.26 nm) were synthesized with the hydrothermal method. The electrochemiluminescence (ECL) of CdTe QDs was investigated in detail in air-saturated solution without adding foreign oxidant. It was found that the ECL of CdTe QDs displayed a size-dependent property. With the increasing in the particle size of the CdTe QDs, the ECL intensity was gradually increased, in addition, both ECL peak potentials and ECL onset potentials of CdTe QDs were shifted positively. Influences of some factors on the ECL intensity were investigated. Under the optimal conditions, the ECL intensity had a linear relationship with the concentration of l-cysteine (l-Cys) in the range from 1.3 × 10−6 to 3.5 × 10−5 mol L−1 (R2 0.996) with a detection limit of 8.7 × 10−7 mol L−1 (S/N = 3). The proposed method was applied to the determination of l-Cys in real samples with satisfactory results. Compared with previous reports, it has better selectivity for the determination of l-Cys.  相似文献   

13.
A method for determination of nine brominated phenols as environmental risk compounds was developed by on-line coupled capillary isotachophoresis and capillary zone electrophoresis (ITP–CZE). For ITP step, 1 × 10−2 mol L−1 hydrochloric acid with 3 × 10−2 mol L−1 ammediol pH 9.1 was used as the leading electrolyte, and 3 × 10−2 mol L−1 β-alanine with 2 × 10−2 mol L−1 sodium hydroxide pH 10.05 was used as the terminating electrolyte. As the background electrolyte for CZE separation, 2.5 × 10−2 mol L−1 β-alanine with 2.5 × 10−2 mol L−1 lysine pH 9.6 was used. All electrolytes contained 0.05% or 0.1% (m/v) hydroxyethylcellulose to suppress the electroosmotic flow. UV detection at wavelength 220 nm was used. Detection limits in order of tens of nmol L−1 were achieved. Good repeatability of migration times (less than 0.33% RSD) and good repeatability of peak areas (less than 7.19% RSD) at concentration level 5 × 10−8 mol L−1 were observed. Developed ITP–CZE method was applied to determination of brominated phenols in spiked tap and river water samples.  相似文献   

14.
Duan J  Jiang X  Ni S  Yang M  Zhan J 《Talanta》2011,85(4):1738-1743
This paper described an investigation of a novel eco-friendly fluorescence sensor for Hg2+ ions based on N-acetyl-l-cysteine (NAC)-capped ZnS quantum dots (QDs) in aqueous solution. By using safe and low-cost materials, ZnS QDs modified by NAC were easily synthesized in aqueous medium via a one-step method. The quantitative detection of Hg2+ ions was developed based on fluorescence quenching of ZnS QDs with high sensitivity and selectivity. Under optimal conditions, its response was linearly proportional to the concentration of Hg2+ ions in a range from 0 to 2.4 × 10−6 mol L−1 with a detection limit of 5.0 × 10−9 mol L−1. Most of common physiologically relevant cations and anions did not interfere with the detection of Hg2+. The proposed method was applied to the trace determination of Hg2+ ions in water samples. The possible quenching mechanism was also examined by fluorescence and UV-vis absorption spectra.  相似文献   

15.
Herein, an innovative and simple strategy for synthesizing high fluorescent Cu nanoclusters was successfully established while l-cysteine played a role as the stabilizer. Meaningfully, the current Cu nanoclusters together with a quantum yield of 14.3% were prepared in aqueous solution, indicating their extensive applications. Subsequently, the possible fluorescence mechanism was elucidated by fluorescence, UV–vis, HR-TEM, FTIR, XPS, and MS. Additionally, the CuNCs were employed for assaying Hg2+ on the basis of the interactions between Hg2+ and l-cysteine; thus facilitating the quenching of their fluorescence. The proposed analytical strategy permitted detections of Hg2+ in a linear range of 1.0 × 10−7 mol L−1 × 10−3 mol L−1, with a detection limit of 2.4 × 10−8 mol L−1 at a signal-to-noise ratio of 3. Significantly, this CuNCs described here were further applied for coding and fluorescent staining, suggesting may broaden avenues toward diverse applications.  相似文献   

16.
The polyamines, octyl-[2-(2-octylamino-ethylamino)-ethyl]-amine (L1) and octyl-{2-[2-(2-octylamino-ethylamino)-ethylamino]-ethyl}-amine (L2), have been used as anion ionophores in PVC-based membrane ion-selective electrodes. Different electrodes were prepared containing L1, or L2, and o-nitrophenyl octyl ether (NPOE) or bis(2-ethylhexyl)sebacate (DOS) as plasticizers. The response of the electrodes was tested in two different buffers, HEPES-KOH (pH 7) and MES-KOH (pH 5.6). Electrodes containing L1 and L2 with NPOE (E1 and E2, respectively) showed a Nernstian response for thiocyanate with a good response time. The detection limit, linear range and slope for electrode E1 were 3.8 × 10−6 mol dm−3, 1 × 10−5 to 1 × 10−1 mol dm−3 and −57.2 mV decade−1 at pH 5.6 and 4.47 × 10−6 mol dm−3, 1.95 × 10−5 to 1 × 10−1 mol dm−3 and −58.1 mV decade−1 at pH 7.0. For electrode E2 the detection limit, linear range and slope found were 2.63 × 10−6 mol dm−3, 7.94 × 10−6 to 1 × 10−1 mol dm−3 and −58.5 mV decade−1 at pH 5.6 and 1.23 × 10−5 mol dm−3, 7.95 × 10−5 to 1 × 10−1 mol dm−3 and −46.0 mV decade−1 at pH 7. In contrast, electrodes containing DOS as plasticizers gave only response at pH 5.6 (detection limit, linear range and slope at pH 5.6 were 3.16 × 10−5 mol dm−3, 1 × 10−4 to 1 × 10−1 mol dm−3 and −52.6 mV decade−1). Selectivity coefficients for different anions with respect to thiocyanate were calculated. The electrode E2 at pH 5.6 was also used for the determination of SCN by potentiometric titrations with Ag+ ions with good results. The electrode E2 was also used to determine concentrations of thiocyanate in biological samples.  相似文献   

17.
Water-soluble luminescent CdSe quantum dots surface-modified with triethanolamine (TEA-CdSe-QDs) were prepared with high stability. The fluorescence of the TEA-CdSe-QDs was greatly quenched only when Hg2+ and I coexisted in the solution, whereas addition of either Hg2+ or I individually has no noticeable effect on the fluorescence emission. Such a unique quenching effect could be used for reciprocal recognition of mercury (II) ions and/or iodide anions in aqueous solution with rather high selectivity and sensitivity. The detection limits of Hg2+ or I ion were 1.9 × 10−7 mol L-1 or 2.8 × 10−7 mol L−1, respectively. The adequate experiments showed that iodine (I) anions could bridge between TEA-CdSe-QDs and Hg2+ to form a stable complex (QDs-I-Hg2+) and the following effective electron transfer from the QDs to the Hg2+ could be responsible for the fluorescence quenching of QDs.  相似文献   

18.
An ultrasensitive and simple method for the determination of melamine was developed based on the fluorescence quenching of thioglycolic acid (TGA) capped CdTe quantum dots (QDs) at pH 11.0. In strong alkaline aqueous solution, the selectivity of the method has been greatly improved due to most heavy metal ions show no interference as they are in the precipitation form or in their anion form. Furthermore, CdTe quantum dots have higher quantum yields at higher pH. The method has a wider concentration range and lower detection limit. The influence factors on the determination of melamine were investigated and the optimum conditions were determined. Under optimum conditions, the fluorescence intensity change of TGA coated CdTe quantum dots was linearly proportional to melamine over a concentration range from 1.0 × 10−11 to 1.0 × 10−5 mol L−1 with a correlation coefficient of 0.9943 and a detection limit of 5 × 10−12 mol L−1. The mechanism of fluorescence quenching of the QDs has been proposed based on the infrared spectroscopy information and electrophoresis experiments in presence of melamine under alkaline condition. The proposed method was employed to detect trace melamine in milk powder and pet feeds with satisfactory results.  相似文献   

19.
Guo Z  Feng F  Hou Y  Jaffrezic-Renault N 《Talanta》2005,65(4):1052-1055
Bismuth film electrode (BiFE) was shown to be an attractive alternative to common mercury film electrode (MFE) for anodic stripping voltammetric measurements. In this study, bismuth film, that was in situ deposited onto glassy carbon electrode, was used to detect zinc content of milkvetch, used in traditional Chinese medicine. Variables affecting the response have been evaluated and optimized. Experimental results showed a high response, with a good linearity (between 0.5 × 10−6 mol L−1 and 3 × 10−6 mol L−1) a good precision (R.S.D. = 3.58%) and a low detection limit (9.6 × 10−9 mol L−1 with a 120 s anodic). The anodic stripping performance makes the bismuth film electrode very desirable for measurements of trace nutritive element zinc in milkvetch and should impart possible restrictions on the use of mercury electrode.  相似文献   

20.
A fluorescent probe 1 for Hg2+ based on a rhodamine-coumarin conjugate was designed and synthesized. Probe 1 exhibits high sensitivity and selectivity for sensing Hg2+, and about a 24-fold increase in fluorescence emission intensity is observed upon binding excess Hg2+ in 50% water/ethanol buffered at pH 7.24. The fluorescence response to Hg2+ is attributed to the 1:1 complex formation between probe 1 and Hg2+, which has been utilized as the basis for the selective detection of Hg2+. Besides, probe 1 was also found to show a reversible dual chromo- and fluorogenic response toward Hg2+ likely due to the chelation-induced ring opening of rhodamine spirolactam. The analytical performance characteristics of the proposed Hg2+-sensitive probe were investigated. The linear response range covers a concentration range of Hg2+ from 8.0 × 10−8 to 1.0 × 10−5 mol L−1 and the detection limit is 4.0 × 10−8 mol L−1. The determination of Hg2+ in both tap and river water samples displays satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号