首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of 2-azidophenyl isocyanide (7) with [M(CO)(5)(thf)] (M=Cr, W) yields the isocyanide complexes [M(CO)(5)(7)] (M=Cr 8, M=W 9). Complexes 8 and 9 react with tertiary phosphines such as triphenylphosphane at the azido function of the isocyanide ligand to give the 2-triphenylphosphiniminophenyl isocyanide complexes 10 (M=Cr) and 11 (M=W). The polar triphenylphosphiniminophenyl function in complexes 10 and 11 can be hydrolyzed with H(2)O/HBr to afford triphenylphosphane oxide and the complexes containing the unstable 2-aminophenyl isocyanide ligand. This ligand spontaneously cyclizes by intramolecular nucleophilic attack of the primary amine at the isocyanide carbon atom to yield the 2,3-dihydro-1H-benzimidazol-2-ylidene complexes 12 (M=Cr) and 13 (M=W). Double deprotonation of the cyclic NH,NH-carbene ligands in 12 and 13 with KOtBu and reaction with two equivalents of allyl bromide yields the N,N'-dialkylated benzannulated N-heterocyclic carbene complexes 14 (M=Cr) and 15 (M=W). The molecular structures of complexes 9 and 11-15 were confirmed by X-ray diffraction studies.  相似文献   

2.
Incorporation of a nitrogen functionality into a tripodal N-heterocyclic carbene ligand system affords the first N-anchored tetradentate tris-carbene ligands TIMEN(R) (R = Me (5a), t-Bu (5b), Bz (5c)). Treatment of the methyl derivatized [H(3)TIMEN(Me)](PF(6))(3) imidazolium salt (H(3)5a) with silver oxide yields the silver complex [(TIMEN(Me))(2)Ag(3)](PF(6))(3) (9), which, in a ligand transfer reaction, reacts with copper(I) bromide to give the trinuclear copper(I) complex [(TIMEN(Me))(2)Cu(3)](PF(6))(3) (10). Deprotonation of the tert-butyl and benzyl derivatives [H(3)TIMEN(t-Bu)](PF(6))(3) and [H(3)TIMEN(Bz)](PF(6))(3) yields the free tris-carbenes TIMEN(t-Bu) (5b) and TIMEN(Bz) (5c), which react readily with copper(I) salts to give mononuclear complexes [(TIMEN(t-Bu))Cu](PF(6)) (11b) and [(TIMEN(Bz))Cu]Br (11c). The solid-state structures of 10, 11b, and 11c were determined by single-crystal X-ray diffraction. While the TIMEN(Me) ligand yields trinuclear complex 10, with both T-shaped three-coordinate and linear two-coordinate copper(I) centers, the TIMEN(t-Bu) and TIMEN(Bz) ligands induce mononuclear complexes 11b and 11c, rendering the cuprous ion in a trigonal planar ligand environment of three carbenoid carbon centers and an additional, weak axial nitrogen interaction. Complexes 11b and 11c exhibit reversible one-electron redox events at half-wave potentials of 110 and -100 mV vs Fc/Fc(+), respectively, indicating sufficient electronic and structural flexibility of both TIMEN(R) ligands (R = t-Bu, Bz) to stabilize copper(I) and copper(II) oxidation states. Accordingly, a copper(II) NHC complex, [(TIMEN(Bz))Cu](OTf)(2) (12), was synthesized. Paramagnetic complex 12 was characterized by elemental analysis, EPR spectroscopy, and SQUID magnetization measurements.  相似文献   

3.
4.
A novel electrochemical procedure for the preparation of metal complexes of N-heterocyclic carbenes using imidazolium salts or corresponding silver-NHC complexes as carbene sources and electrolytes, and metal plates as the sacrificial anodes is described. The procedure is simple and good yielding without the use of expensive or air-sensitive reagents.  相似文献   

5.
A diverse library of cationic silver complexes bearing bis(N-heterocyclic carbene) ligands have been prepared which exhibit cytotoxicity comparable to cisplatin against the adenocarcinomas MCF7 and DLD1. Bidentate ligands show enhanced cytotoxicity over monodentate and macrocyclic ligands.  相似文献   

6.
The Pd-catalysed asymmetric intramolecular alpha-arylation of amide enolates containing heteroatom substituents gives chiral 3-alkoxy or 3-aminooxindoles in high yield and with enantioselectivities up to 97% ee when a new chiral N-heterocyclic carbene ligand is used.  相似文献   

7.
The new imidazolium salts functionalised with the trimethylsilyl ester group 1ac, were easily obtained by quaternisation of alkyl- or aryl-imidazoles with trimethylsilyl bromoacetate. Salt 1a was isolated and fully characterised. It reacted with mesityl copper (Cu5Mes5) under trimethylsilyl abstraction to form the complex 2. Methanolysis of 1a–c gave good yields of the carboxylic acid functionalised imidazolium salts 3ac. Deprotonation of the latter in liquid ammonia led to the zwitterionic imidazolium carboxylates 4ac. Reaction of 4a with (Cu5Mes5) gave solutions from which the insoluble polymeric 5a crystallised slowly. Generation of the carboxylate-functionalised NHC in situ followed by reaction with Pd(OOCCH3)2 gave the new complex 6a in which the NHC-carboxylate ligand is chelate bidentate.  相似文献   

8.
N-Heterocyclic carbenes (NHCs) can bind as two-electron sigma-donor ligands to lanthanide and actinide metal cations. In this review we summarise how the incorporation of an anionic group (alkoxide or amido), to form heterobidentate NHC ligands, allows the synthesis of a range of f-block NHC adducts. The tethering group also allows the lability of the NHC group, and its subsequent reactivity, to be studied. We include a brief survey of the known, structurally characterised f-element-NHC bond distances, and a range of substrates that react to displace the metal-bound NHC group.  相似文献   

9.
Novel carbohydrate bearing imidazolium salts have been synthesized and used for the in situ generation of the corresponding N-heterocyclic carbenes. These compounds were successfully used as catalysts of the conjugate umpolung of cinnamaldehyde to form γ-butyrolactones. In addition, silver and palladium complexes of these N-heterocyclic carbenes were synthesized and structurally characterized.  相似文献   

10.
The first examples of mixed metal trinuclear clusters carrying N-heterocyclic carbene (NHC) ligands were isolated from reactions of the complexes [Ni(NHC)ClCp] [NHC = bis-(2,6-diisopropylphenyl)- or bis-(2,4,6-trimethylphenyl)-imidazol-2-ylidene] with [Mo(CO)(3)Cp](-); the unsaturated 46-electron clusters have triangular MoNi(2) cores and the reaction pathway activates usually inert Ni-Cp and Ni-NHC bonds.  相似文献   

11.
The importance of unsymmetrical N-heterocyclic carbenes (uNHCs) as ligands in metal-catalyzed reactions is undeniable. While uNHCs show similar properties as compared with symmetrical NHCs, dissymmetrization allows for further fine-tuning. The introduction of chelatization, hemilability, bifunctionality, shielding effects, and chirality-transfer influences the catalyst's stability, reactivity, and selectivity, thus offering access to tailor-made systems including mono- and multidentate uNHC ligands. Based on selected examples, the structure-reactivity relationship of uNHCs employed in metal catalysts is presented. The focus is on catalytically active complexes, which either offer access to new applications or lead to significantly improved results in metal-catalyzed reactions.  相似文献   

12.
A novel type of N-heterocyclic carbene ligand, with a bicyclic motif at the non-carbenic carbons of an imidazolin-2-ylidene core, has been developed. This type of ligand formed an air and moisture stable silver complex even with N,N′-dimethyl NHC. Allylic arylation with a Grignard reagent catalyzed by copper complexes of the NHC ligands proceeded preferentially at the γ-position, indicating the effective steric shielding ability of this framework.  相似文献   

13.
《Tetrahedron: Asymmetry》2006,17(12):1759-1762
We describe the improved catalytic reactivity of terminal alkenes with 1,2-diboranes in the presence of Au(I) and Ag(I) complexes when N-heterocyclic carbene ligands are used. The new catalytic systems are able to diminish the undesired β-H-elimination of the alkylboryl–metal intermediates, which leads to the formation of hydroborated byproducts. The electronic properties and molecular the structure of the precursors of the catalysts could explain the modest asymmetric induction provided.  相似文献   

14.
Two tripodal trisimidazolium ligand precursors have been tested in the synthesis of new N-heterocyclic carbene rhodium and iridium complexes. [Tris(3-methylbenzimidazolium-1-yl)]methane sulfate gave products with coordination of the decomposed precursor. [1,1,1-Tris(3-butylimidazolium-1-yl)methyl]ethane trichloride (TIMEH(3)(Bu)) coordinated to the metal in a chelate and bridged-chelate form, depending on the reaction conditions. The crystal structures of two of the products are described. The compounds resulting from the coordination with TIME(Bu) were tested in the catalytic hydrosilylation of terminal alkynes.  相似文献   

15.
唐文明  陈卓  方伊 《有机化学》1999,19(1):5-14
对钨卡宾络合物参与的反应机理和一些合成方法作了简要的介绍,并评述了部分钨卡宾络合物合成有机化合物的反应。  相似文献   

16.
Xu G  Gilbertson SR 《Organic letters》2005,7(21):4605-4608
[reaction: see text] The synthesis of a series of NHC building blocks that can then be incorporated into more complicated structures by palladium catalysis is reported. This approach is used for the synthesis of three amino acids containing NHC side chains. The ability to use the amino acids in solid-phase peptide synthesis to make NHC-containing peptides is also demonstrated. Additionally, the NHC side chain can be deprotected and coordinated to a catalytically active transition metal. Finally, it is illustrated that the building blocks participate in Suzuki coupling to provide access to substituted NHC ligands.  相似文献   

17.
The reaction of an imidazolium salt with LiBEt(3)H afforded triethylborane adduct of imidazol-2-ylidene, which can act as a carbene precursor for the synthesis of a transition metal complex as well as a main group element complex.  相似文献   

18.
Addition of excesses of N-heterocyclic carbenes (NHCs) IEt2Me2, IiPr2Me2 or ICy (IEt2Me2 = 1,3-diethyl-4,5-dimethylimidazol-2-ylidene; IiPr2Me2 = 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene; ICy = 1,3-dicyclohexylimidazol-2-ylidene) to [HRh(PPh3)4] (1) affords an isomeric mixture of [HRh(NHC)(PPh3)2] (NHC = IEt2Me2 (cis-/trans-2), IiPr2Me2 (cis-/trans-3), ICy (cis-/trans-4) and [HRh(NHC)2(PPh3)] (IEt2Me2(cis-/trans-5), IiPr2Me2 (cis-/trans-6), ICy (cis-/trans-7)). Thermolysis of 1 with the aryl substituted NHC, 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene (IMesH2), affords the bridging hydrido phosphido dimer, [{(PPh3)2Rh}2(μ-H)(μ-PPh2)] (8), which is also the reaction product formed in the absence of carbene. When the rhodium precursor was changed from 1 to [HRh(CO)(PPh3)3] (9) and treated with either IMes (=1,3-dimesitylimidazol-2-ylidene) or ICy, the bis-NHC complexes trans-[HRh(CO)(IMes)2] (10) and trans-[HRh(CO)(ICy)2] (11) were formed. In contrast, the reaction of 9 with IiPr2Me2 gave [HRh(CO)(IiPr2Me2)2] (cis-/trans-12) and the unusual unsymmetrical dimer, [(PPh3)2Rh(μ-CO)2Rh(IiPr2Me2)2] (13). The complexes trans-3, 8, 10 and 13 have been structurally characterised.  相似文献   

19.
This paper reports the synthesis and characterization of a variety of ruthenium complexes coordinated with phosphine and N-heterocyclic carbene (NHC) ligands. These complexes include several alkylidene derivatives of the general formula (NHC)(PR(3))(Cl)(2)Ru=CHR', which are highly active olefin metathesis catalysts. Although these catalysts can be prepared adequately by the reaction of bis(phosphine) ruthenium alkylidene precursors with free NHCs, we have developed an alternative route that employs NHC-alcohol or -chloroform adducts as "protected" forms of the NHC ligands. This route is advantageous because NHC adducts are easier to handle than their free carbene counterparts. We also demonstrate that sterically bulky bis(NHC) complexes can be made by reaction of the pyridine-coordinated precursor (NHC)(py)(2)(Cl)(2)Ru=CHPh with free NHCs or NHC adducts. Two crystal structures are presented, one of the mixed bis(NHC) derivative (H(2)IMes)(IMes)(Cl)(2)Ru=CHPh, and the other of (PCy(3))(Cl)(CO)Ru[eta(2)-(CH(2)-C(6)H(2)Me(2))(N(2)C(3)H(4))(C(6)H(2)Me(3))], the product of ortho methyl C-H bond activation. Other side reactions encountered during the synthesis of new ruthenium alkylidene complexes include the formation of hydrido-carbonyl-chloride derivatives in the presence of primary alcohols and the deprotonation of ruthenium vinylcarbene ligands by KOBu(t). We also evaluate the olefin metathesis activity of NHC-coordinated complexes in representative RCM and ROMP reactions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号