首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2.
A gradient-constrained minimum network T is a minimum length network, spanning a given set of nodes N in space with edges whose gradients are all no more than an upper bound m. The nodes in T but not in N are referred to as Steiner points. Such networks occur in the underground mining industry where the typical maximal gradient is about 1:7 (≈ 0.14). Because of the gradient constraint the lengths of edges in T are measured by a special metric, called the gradient metric. An edge in T is labelled as a b-edge, or an m-edge, or an f-edge if the gradient between its endpoints is greater than, or equal to, or less than m respectively. The set of edge labels at a Steiner point is called its labelling. A Steiner point s with a given labelling is called labelled minimal if T cannot be shortened by a label-preserving perturbation of s. Furthermore, s is called locally minimal if T cannot be shortened by any perturbation of s even if its labelling is not preserved. In this paper we study the properties of labelled minimal Steiner points, as well as the necessary and sufficient conditions for Steiner points to be locally minimal. It is shown that, with the exception of one labelling, a labelled minimal Steiner point is necessarily unique with respect to its adjacent nodes, and that the locally minimal Steiner point is always unique, even though the gradient metric is not strictly convex.  相似文献   

3.
The Steiner problem is the problem of finding the shortest network connecting a given set of points. By the singular Plateau Problem, we will mean the problem of finding an area-minimizing surface (or a set of surfaces adjoined so that it is homeomorphic to a 2-complex) spanning a graph. In this paper, we study the parametric versions of the Steiner problem and the singular Plateau problem by a variational method using a modified energy functional for maps. The main results are that the solutions of our one- and two-dimensional variational problems yield length and area minimizing maps respectively, i.e. we provide new methods to solve the Steiner and singular Plateau problems by the use of energy functionals. Furthermore, we show that these solutions satisfy a natural balancing condition along its singular sets. The key issue involved in the two-dimensional problem is the understanding of the moduli space of conformal structures on a 2-complex.

  相似文献   


4.
We formulate and investigate the Multi-Weighted Steiner Problem (MWS), a generalization of the Steiner problem in graphs, involving more than one weight function. As a special case, it contains the hierarchical network design problem. With the notion of "bottleneck length/distance", a min-max measure, we analyze the interaction between differently weighted edges in a solution. Combining the results with known methods for the Steiner problem in graphs and the hierarchical network design problem, two heuristics for the MWS are developed, one based on weight modifications and the other on exchanging edges. Both are of time complexityO(kv 2), withv the number of nodes andk the number of special nodes in the graph. The first is also suited for thedirected MWS; the second is expected to perform better on the undirected version. Before actually solving the Steiner problem in graphs and the hierarchical network design problem, preprocessing techniques exploiting tests to reduce the problem graphs have proven to be valuable. We adapt three prominent tests for use in the MWS.  相似文献   

5.
The overview is devoted to topological and geometric structures associated with gyroscopic systems whose action functional S is multivalued. The expediency of constructing and studying them is, in particular, stipulated by the fact that the standard methods of the calculus of variations in the problem with fixed endpoints are not effective for such functionals. One of the methods for overcoming the difficulties arising here is the application of bundles, foliations, connections, and also Riemannian and Lorentz manifolds. In this way, it turns out to be possible to perform the reduction of the two-point problem for S to problems with fixed initial point and movable endpoint for the length functional {ie828-01} of a pseudo-Riemannian manifold foliated over the configurational space of the gyroscopic system considered. As the endpoint manifolds, the leaves of the Riemannian foliation are used, and the correspondence between the extremals of the functionals S and {ie828-02} is stated by using the Ehresmann connection of this bundle. The paper discusses the results on the motions of natural mechanical systems with gyroscopic forces and gyroscopic systems of relativistic type obtained by using the above reduction and also the topological and geometric constructions used in it. __________ Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 22, Geometry, 2007.  相似文献   

6.
In three-dimensional space an embedded network is called gradient-constrained if the absolute gradient of any differentiable point on the edges in the network is no more than a given value m. A gradient-constrained minimum Steiner tree T is a minimum gradient-constrained network interconnecting a given set of points. In this paper we investigate some of the fundamental properties of these minimum networks. We first introduce a new metric, the gradient metric, which incorporates a new definition of distance for edges with gradient greater than m. We then discuss the variational argument in the gradient metric, and use it to prove that the degree of Steiner points in T is either three or four. If the edges in T are labelled to indicate whether the gradients between their endpoints are greater than, less than, or equal to m, then we show that, up to symmetry, there are only five possible labellings for degree 3 Steiner points in T. Moreover, we prove that all four edges incident with a degree 4 Steiner point in T must have gradient m if m is less than 0.38. Finally, we use the variational argument to locate the Steiner points in T in terms of the positions of the neighbouring vertices.  相似文献   

7.
In the design of wireless networks, techniques for improving energy efficiency and extending network lifetime have great importance, particularly for defense and civil/rescue applications where resupplying transmitters with new batteries is not feasible. In this paper we study a method for improving the lifetime of wireless networks by minimizing the length of the longest edge in the interconnecting tree by deploying additional relay nodes at specific locations. This optimization problem, known as the Bottleneck Steiner Tree Problem (BSTP), asks to find a Steiner tree for n terminals with at most k Steiner points such that the length of the longest edge in the tree is minimized. We present a ratio- polynomial time approximation algorithm for BSTP, where is an arbitrary positive number.  相似文献   

8.
The gradient-constrained Steiner tree problem asks for a shortest total length network interconnecting a given set of points in 3-space, where the length of each edge of the network is determined by embedding it as a curve with absolute gradient no more than a given positive value m, and the network may contain additional nodes known as Steiner points. We study the problem for a fixed topology, and show that, apart from a few easily classified exceptions, if the positions of the Steiner points are such that the tree is not minimum for the given topology, then there exists a length reducing perturbation that moves exactly 1 or 2 Steiner points. In the conclusion, we discuss the application of this work to a heuristic algorithm for solving the global problem (across all topologies).  相似文献   

9.
The Steiner problem in networks is concerned with the determination of a minimum cost subnetwork connecting some (not necessarily all) vertices of an underlying network. The decision version of the Steiner problem is known to be NP-complete. However, if the underlying network is outerplanar or series-parallel, linear time algorithms have been developed.In this paper a linear time algorithm for the Steiner problem in Halin networks is presented. This result provides another example where the recursive structure of the underlying network leads to an efficient algorithm. Furthermore, the result is of interest from the network design point of view, since Halin networks are nontrivial generalizations of tree and ring networks.  相似文献   

10.
The Steiner problem in a λ-plane is the problem of constructing a minimum length network interconnecting a given set of nodes (called terminals), with the constraint that all line segments in the network have slopes chosen from λ uniform orientations in the plane. This network is referred to as a minimum λ-tree. The problem is a generalization of the classical Euclidean and rectilinear Steiner tree problems, with important applications to VLSI wiring design.A λ-tree is said to be locally minimal if its length cannot be reduced by small perturbations of its Steiner points. In this paper we prove that a λ-tree is locally minimal if and only if the length of each path in the tree cannot be reduced under a special parallel perturbation on paths known as a shift. This proves a conjecture on necessary and sufficient conditions for locally minimal λ-trees raised in [M. Brazil, D.A. Thomas, J.F. Weng, Forbidden subpaths for Steiner minimum networks in uniform orientation metrics, Networks 39 (2002) 186-222]. For any path P in a λ-tree T, we then find a simple condition, based on the sum of all angles on one side of P, to determine whether a shift on P reduces, preserves, or increases the length of T. This result improves on our previous forbidden paths results in [M. Brazil, D.A. Thomas, J.F. Weng, Forbidden subpaths for Steiner minimum networks in uniform orientation metrics, Networks 39 (2002) 186-222].  相似文献   

11.
A gradient-constrained discounted Steiner tree is a network interconnecting given set of nodes in Euclidean space where the gradients of the edges are all no more than an upper bound which defines the maximum gradient. In such a tree, the costs are associated with its edges and values are associated with nodes and are discounted over time. In this paper, we study the problem of optimally locating a single Steiner point in the presence of the gradient constraint in a tree so as to maximize the sum of all the discounted cash flows, known as the net present value (NPV). An edge in the tree is labelled as a b edge, or a m edge, or an f edge if the gradient between its endpoints is greater than, or equal to, or less than the maximum gradient respectively. The set of edge labels at a discounted Steiner point is called its labelling. The optimal location of the discounted Steiner point is obtained for the labellings that can occur in a gradient-constrained discounted Steiner tree. In this paper, we propose the gradient-constrained discounted Steiner point algorithm to optimally locate the discounted Steiner point in the presence of a gradient constraint in a network. This algorithm is applied to a case study. This problem occurs in underground mining, where we focus on the optimization of underground mine access to obtain maximum NPV in the presence of a gradient constraint. The gradient constraint defines the navigability conditions for trucks along the underground tunnels.  相似文献   

12.
We develop foundational tools for classifying the extreme valid functions for the k-dimensional infinite group problem. In particular, we present the general regular solution to Cauchy’s additive functional equation on restricted lower-dimensional convex domains. This provides a k-dimensional generalization of the so-called Interval Lemma, allowing us to deduce affine properties of the function from certain additivity relations. Next, we study the discrete geometry of additivity domains of piecewise linear functions, providing a framework for finite tests of minimality and extremality. We then give a theory of non-extremality certificates in the form of perturbation functions. We apply these tools in the context of minimal valid functions for the two-dimensional infinite group problem that are piecewise linear on a standard triangulation of the plane, under a regularity condition called diagonal constrainedness. We show that the extremality of a minimal valid function is equivalent to the extremality of its restriction to a certain finite two-dimensional group problem. This gives an algorithm for testing the extremality of a given minimal valid function.  相似文献   

13.
The minimum network problem (Steiner tree problem) in space is much harder than the one in the Euclidean plane. The Steiner tree problem for four points in the plane has been well studied. In contrast, very few results are known on this simple Steiner problem in 3D-space. In the first part of this paper we analyze the difficulties of the Steiner problem in space. From this analysis we introduce a new concept — Simpson intersections, and derive a system of iteration formulae for computing Simpson intersections. Using Simpson intersections the Steiner points can be determined by solving quadratic equations. As well this new computational method makes it easy to check the impossibility of computing Steiner trees on 4-point sets by radicals. At the end of the first part we consider some special cases (planar and symmetric 3D-cases) that can be solved by radicals. The Steiner ratio problem is to find the minimum ratio of the length of a Steiner minimal tree to the length of a minimal spanning tree. This ratio problem in the Euclidean plane was solved by D. Z. Du and F. K. Hwang in 1990, but the problem in 3D-space is still open. In 1995 W.D. Smith and J.M. Smith conjectured that the Steiner ratio for 4-point sets in 3D-space is achieved by regular tetrahedra. In the second part of this paper, using the variational method, we give a proof of this conjecture.  相似文献   

14.
Approximations for Steiner Trees with Minimum Number of Steiner Points   总被引:1,自引:0,他引:1  
Given n terminals in the Euclidean plane and a positive constant, find a Steiner tree interconnecting all terminals with the minimum number of Steiner points such that the Euclidean length of each edge is no more than the given positive constant. This problem is NP-hard with applications in VLSI design, WDM optical networks and wireless communications. In this paper, we show that (a) the Steiner ratio is 1/ 4, that is, the minimum spanning tree yields a polynomial-time approximation with performance ratio exactly 4, (b) there exists a polynomial-time approximation with performance ratio 3, and (c) there exists a polynomial-time approxi-mation scheme under certain conditions.  相似文献   

15.
The generalized Steiner problem (GSP) is concerned with the determination of a minimum cost subnetwork of a given network where some (not necessarily all) vertices satisfy certain pairwise (vertex or edge) connectivity requirements.The GSP has applications to the design of water and electricity supply networks, communication networks and other large-scale systems where connectivity requirements ensure the communication between the selected vertices when some vertices and/or edges can become inoperational due to scheduled maintenance, error, or overload.The GSP is known to beNP-complete. In this paper we show that if the subnetwork is required to be biconnected or respectively edge-biconnected, and the underlying network is outerplanar, the GSP can be solved in linear time.  相似文献   

16.
This paper introduces an exact algorithm for the construction of a shortest curvature-constrained network interconnecting a given set of directed points in the plane and a gradient descent method for doing so in 3D space. Such a network will be referred to as a minimum Dubins tree, since its edges are Dubins paths (or slight variants thereof). The problem of constructing a minimum Dubins tree appears in the context of underground mining optimisation, where the objective is to construct a least-cost network of tunnels navigable by trucks with a minimum turning radius. The Dubins tree problem is similar to the Steiner tree problem, except the terminals are directed and there is a curvature constraint. We propose the minimum curvature-constrained Steiner point algorithm for determining the optimal location of the Steiner point in a 3-terminal network. We show that when two terminals are fixed and the third varied in the planar version of the problem, the Steiner point traces out a limaçon.  相似文献   

17.
A cyclic face 2‐colourable triangulation of the complete graph Kn in an orientable surface exists for n ≡ 7 (mod 12). Such a triangulation corresponds to a cyclic bi‐embedding of a pair of Steiner triple systems of order n, the triples being defined by the faces in each of the two colour classes. We investigate in the general case the production of such bi‐embeddings from solutions to Heffter's first difference problem and appropriately labelled current graphs. For n = 19 and n = 31 we give a complete explanation for those pairs of Steiner triple systems which do not admit a cyclic bi‐embedding and we show how all non‐isomorphic solutions may be identified. For n = 43 we describe the structures of all possible current graphs and give a more detailed analysis in the case of the Heawood graph. © 2002 Wiley Periodicals, Inc. J Combin Designs 10: 92–110, 2002; DOI 10.1002/jcd.10001  相似文献   

18.
A doubly constant weight code is a binary code of length n1 + n2, with constant weight w1 + w2, such that the weight of a codeword in the first n1 coordinates is w1. Such codes have applications in obtaining bounds on the sizes of constant weight codes with given minimum distance. Lower and upper bounds on the sizes of such codes are derived. In particular, we show tight connections between optimal codes and some known designs such as Howell designs, Kirkman squares, orthogonal arrays, Steiner systems, and large sets of Steiner systems. These optimal codes are natural generalization of Steiner systems and they are also called doubly Steiner systems. © 2007 Wiley Periodicals, Inc. J Combin Designs 16: 137–151, 2008  相似文献   

19.
Supposen points are given in the plane. Their coordinates form a 2n-vectorX. To study the question of finding the shortest Steiner networkS connecting these points, we allowX to vary over a configuration space. In particular, the Steiner ratio conjecture is well suited to this approach and short proofs of the casesn=4, 5 are discussed. The variational approach was used by us to solve other cases of the ratio conjecture (n=6, see [11] and for arbitraryn points lying on a circle). Recently, Du and Hwang have given a beautiful complete solution of the ratio conjecture, also using a configuration space approach but with convexity as the major idea. We have also solved Graham's problem to decide when the Steiner network is the same as the minimal spanning tree, for points on a circle and on any convex polygon, again using the variational method.  相似文献   

20.
ASteiner tree problem on the plane is that of finding a minimum lengthSteiner tree connecting a given setK ofterminals and lying within a given regionR of the Euclidean plane; it includes as special cases the Euclidean Steiner minimal tree problem (ESMT), the rectilinear Steiner tree problem (RST), and the Steiner tree problem on graphs (STG). ASteiner hull forK inR generically refers to any subregion ofR known to contain a Steiner tree. This paper gives a survey of the role of Steiner hulls in the Steiner tree problem. The significance of Steiner hulls in the efficient solution of Steiner tree problems is outlined, and then a compendium is given of the known Steiner hull constructions for ESMT, RST, and STG problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号