首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe a method to analyze the sequence specificity of an RNA-binding domain. The method, which we have named scaffold-independent analysis, reports on the specificity for each nucleotide position within an RNA target, uncoupled from the surrounding structural and sequence context. We expect this information to improve our understanding of protein-RNA interfaces in ssRNA binding domains (e.g., KH or RRM domains) and to be useful to the design of novel protein-RNA recognition surfaces. Our NMR binding assays using the third KH domain of the Nova-1 protein provide a proof-of-principle for the method and novel information on the specificity of this domain for its RNA targets.  相似文献   

2.
A catalytic metallodrug that targets stem-loop IIb of the internal ribosomal entry site (IRES) RNA of hepatitis C virus (HCV) demonstrates enzyme-like turnover with K(M) of 0.85 μM, k(cat) of 0.53 min(-1), and a turnover number of 31.9 for Cu·GGHYrFK-amide (1-Cu), and yielded an antiviral activity (IC(50)) of 0.58 μM in an HCV cellular replicon assay.  相似文献   

3.
The 2'-hydroxyl group makes essential contributions to RNA structure and function. As an approach to assess the ability of a mercapto group to serve as a functional analogue for the 2'-hydroxyl group, we synthesized 2'-mercaptonucleotides for use in nucleotide analogue interference mapping. To correlate the observed interference effects with tertiary structure, we used the independently folding DeltaC209 P4-P6 domain from the Tetrahymena group I intron. We generated populations of DeltaC209 P4-P6 molecules containing 2'-mercaptonucleotides located randomly throughout the domain and separated the folded molecules from the unfolded molecules by nondenaturing gel electrophoresis. Iodine-induced cleavage of the RNA molecules revealed the sites at which 2'-mercaptonucleotides interfere with folding. These interferences cluster in the most densely packed regions of the tertiary structure, occurring only at sites that lack the space and flexibility to accommodate a sulfur atom. Interference mapping with 2'-mercaptonucleotides therefore provides a method by which to identify structurally rigid and densely packed regions within folded RNA molecules.  相似文献   

4.
RNA interference (RNAi) is a critical cellular pathway activated by double stranded RNA and regulates the gene expression of target mRNA. During RNAi, the 3′ end of siRNA binds with the PAZ domain, followed by release and rebinding in a cyclic manner, which deemed essential for proper gene silencing. Recently, we provided the forces underlying the recognition of small interfering RNA by PAZ in a computational study based on the structure of Drosophila Argonaute 2 (Ago2) PAZ domain. We have now reanalyzed these data within the view of the new available structures from human Argonauts. While the parameters of weak binding are correlated with higher (RNAi) in the Drosophila model, a different profile is predicted with the human Ago2 PAZ domain. On the basis of the human Ago2 PAZ models, the indicators of stronger binding as the total binding energy and the free energy were associated with better RNAi efficacy. This discrepancy might be attributable to differences in the binding site topology and the difference in the conformation of the bound nucleotides.  相似文献   

5.
Single particle electron cryomicroscopy is nowadays routinely used to generate three-dimensional structural information of ribosomal complexes without the need of crystallization. A large number of structures of functional important ribosomal complexes have thus been determined using this technique. In E. coli 70S ribosomes all three tRNA binding sites could be localized. The ternary complex of EF-TutRNAGTP that delivers the tRNA to the ribosome was directly visualized in a ribosomal complex blocked by the antibiotic kirromycin. Three different functional states of translocation have been studied and the respective EF-G binding sites have been mapped. The level of resolution achievable with electron cryomicroscopy allows conformational changes in the domain structures of elongation factors to be modelled in terms of rigid body movements. Structural information on eukaryotic ribosomes is also available for yeast and mammalian 80S ribosomes. The structural differences between rabbit 80S and E. coli 70S ribosomes could be interpreted in terms of ribosomal RNA expansion segments in the 18S and 23S RNA. The EF-G homologue EF2 was mapped analysing the structure of an 80SEF2sodarin complex and most recently the binding of a hepatitis C virus IRES element to a yeast 40S subunit has been studied. The first electron cryomicroscopical 3D reconstructions have further been used to overcome the initial phasing problems in X-ray crystallographic studies of the ribosome facilitating structure determination of the recent atomic resolution structures of the 30S and 50S ribosomal subunits. In turn, the knowledge of the atomic structure of the ribosome makes detailed interpretations of cryo-EM maps possible at approximately 20 A resolution.  相似文献   

6.
Multi‐domain proteins play critical roles in fine‐tuning essential processes in cellular signaling and gene regulation. Typically, multiple globular domains that are connected by flexible linkers undergo dynamic rearrangements upon binding to protein, DNA or RNA ligands. RNA binding proteins (RBPs) represent an important class of multi‐domain proteins, which regulate gene expression by recognizing linear or structured RNA sequence motifs. Here, we employ segmental perdeuteration of the three RNA recognition motif (RRM) domains in the RBP TIA‐1 using Sortase A mediated protein ligation. We show that domain‐selective perdeuteration combined with contrast‐matched small‐angle neutron scattering (SANS), SAXS and computational modeling provides valuable information to precisely define relative domain arrangements. The approach is generally applicable to study conformational arrangements of individual domains in multi‐domain proteins and changes induced by ligand binding.  相似文献   

7.
Multi‐domain proteins play critical roles in fine‐tuning essential processes in cellular signaling and gene regulation. Typically, multiple globular domains that are connected by flexible linkers undergo dynamic rearrangements upon binding to protein, DNA or RNA ligands. RNA binding proteins (RBPs) represent an important class of multi‐domain proteins, which regulate gene expression by recognizing linear or structured RNA sequence motifs. Here, we employ segmental perdeuteration of the three RNA recognition motif (RRM) domains in the RBP TIA‐1 using Sortase A mediated protein ligation. We show that domain‐selective perdeuteration combined with contrast‐matched small‐angle neutron scattering (SANS), SAXS and computational modeling provides valuable information to precisely define relative domain arrangements. The approach is generally applicable to study conformational arrangements of individual domains in multi‐domain proteins and changes induced by ligand binding.  相似文献   

8.
RNA recognition by proteins is often accompanied by significant changes in RNA dynamics in addition to conformational changes. However, there are very few studies which characterize the changes in molecular motions in RNA on protein binding. We present a quantitative (13)C NMR relaxation study of the changes in RNA dynamics in the pico-nanosecond time scale and micro-millisecond time scale resulting from interaction of the stem-loop SRE-RNA with the VTS1p-SAM domain. (13)C relaxation rates of the protonated carbons of the nucleotide base and anomeric carbons have been analyzed by employing the model-free formalism, for a fully (13)C/(15)N-labeled sample of the SRE-RNA in the free and protein-bound forms. In the free RNA, the nature of molecular motions are found to be distinctly different in the stem and the loop region. On binding to the protein, the nature of motions becomes more homogeneous throughout the RNA, with many residues showing increased flexibility at the aromatic carbon sites, while the anomeric carbon sites become more rigid. Surprisingly, we also observe indications of a slow collective motion of the RNA in the binding pocket of the protein. The observation of increased motions on binding is interesting in the context of growing evidence that binding does not always lead to motional restrictions and the resulting entropy gain could favor the free energy of association.  相似文献   

9.
We have found that nonenzymatic, template-directed ligation reactions of oligoribonucleotides display high selectivity for the formation of 3'-5' rather than 2'-5' phosphodiester bonds. Formation of the 3'-5'-linked product is favored regardless of the metal ion catalyst or the leaving group, and for several different ligation junction sequences. The degree of selectivity depends on the leaving group: the ratio of 3'-5'- to 2'-5'-linked products was 10-15:1 when the 5'-phosphate was activated as the imidazolide, and 60-80:1 when the 5'-phosphate was activated by the formation of a 5'-triphosphate. Comparison of oligonucleotide ligation reactions with previously characterized single nucleotide primer extension reactions suggests that the strong preference for 3'-5'-linkages in oligonucleotide ligation is primarily due to occurence of ligation within the context of an extended Watston-Crick duplex. The ability of RNA to correctly self-assemble by template-directed ligation is an intrinsic consequence of its chemical structure and need not be imposed by an external catalyst (i.e., an enzyme polymerase); RNA therefore provides a reasonable structural basis for a self-replicating system in a prebiological world.  相似文献   

10.
RNA plays a crucial role in cellular biology as a carrier of genetic information. However, beyond this passive role, RNA has been shown to regulate various cellular processes in a form that is not translated into protein. Non-coding RNA (ncRNA) has been shown to be important in gene regulation, and its aberrant activity has been associated with several disease states. As such, ncRNAs represent a novel target for small molecule regulation and recently, significant advances have been made towards elucidating small molecule regulators of ncRNAs. Herein, we provide an overview of miRNA, siRNA, RNA aptamers, riboswitches, and ribozymes, within the context of recent findings regarding the exogenous regulation of these ncRNAs by small molecules. The development of these small molecule tools has far-reaching applications in the advancement of molecular therapeutics.  相似文献   

11.
Modular aptameric sensors   总被引:7,自引:0,他引:7  
We report the first examples of modular aptameric sensors, which transduce recognition events into fluorescence changes through allosteric regulation of noncovalent interactions with a fluorophore. These sensors consist of: (a) a reporting domain, which signals the binding event of an analyte through binding to a fluorophore; (b) a recognition domain, which binds the analyte; and (c) a communication module, which serves as a conduit between recognition and signaling domains. We tested recognition regions specific for ATP, FMN, and theophylline in combinations with malachite green binding aptamer as a signaling domain. In each case, we were able to obtain a functional sensor capable of responding to an increase in analyte concentration with an increase in fluorescence. Similar constructs that consist only of natural RNA could be expressed in cells and used as sensors for intracellular imaging.  相似文献   

12.
13.
Nanospray-FT-ICR has been employed to investigate the processes of genome dimerization, selection, and packaging in human immunodifficiency virus type 1, which are mediated by specific interactions between the nucleocapsid protein (NC) and the structural elements formed by the genome's packaging signal [Psi- ribonucleic acid (RNA)]. This analytical platform allowed for the unambiguous characterization of all the non-covalent complexes formed in vitro by simultaneous RNARNA and proteinRNA binding equilibria. Competitive binding experiments involving the isolated RNA elements were completed to evaluate their ability to sustain specific protein interactions. In similar fashion, ad hoc RNA mutants were used to locate two distinct binding sites on the apical loop and stem-bulge of the monomeric stemloop 1 (SL1) domain, which is responsible for initiating the dimerization process. The stem-bulge motifs provided viable binding sites in both the kissing-loop (KL) and the extended duplex forms of dimeric SL1, whereas the latter included additional sites corresponding to the A- bulge motifs that flank the annealed palindromes. A cross-linking approach using pre-derivatized, photo-cross- linkable NC demonstrated that the SL3 domain was the preferred site for protein binding in the context of full-length Psi-RNA. This concerted strategy is expected to provide new valuable insight into the effects induced by the global folding of Psi-RNA on its ability to interact with the NC protein during genome dimerization, selection and packaging.  相似文献   

14.
BACKGROUND: The biological function of several viral and bacteriophage proteins, and their arginine-rich subdomains, involves RNA-mediated interactions. It has been shown recently that bound peptides adopt either beta-hairpin or alpha-helical conformations in viral and phage peptide-RNA complexes. We have compared the structures of the arginine-rich peptide domain of HIV-1 Rev bound to two RNA aptamers to determine whether RNA architecture can dictate the conformations of a bound peptide. RESULTS: The core-binding segment of the HIV-1 Rev peptide class II RNA aptamer complex spans the two-base bulge and hairpin loop of the bound RNA and the carboxy-terminal segment of the bound peptide. The bound peptide is anchored in place by backbone and sidechain intermolecular hydrogen bonding and van der Waals stacking interactions. One of the bulge bases participates in U*(A*U) base triple formation, whereas the other is looped out and flaps over the bound peptide in the complex. The seven-residue hairpin loop is closed by a sheared G*A mismatch pair with several pyrimidines looped out of the hairpin fold. CONCLUSIONS: Our structural studies establish that RNA architecture dictates whether the same HIV-1 Rev peptide folds into an extended or alpha-helical conformation on complex formation. Arginine-rich peptides can therefore adapt distinct secondary folds to complement the tertiary folds of their RNA targets. This contrasts with protein-RNA complexes in which elements of RNA secondary structure adapt to fit within the tertiary folds of their protein targets.  相似文献   

15.
Riboswitches are cis-acting RNA fragments that regulate gene expression by sensing cellular levels of the associated small metabolites. In bacteria, the class I preQ(1) riboswitch allows the fine-tuning of queuosine biosynthesis in response to the intracellular concentration of the queuosine anabolic intermediate preQ(1). When binding preQ(1), the aptamer domain undergoes a significant degree of secondary and tertiary structural rearrangement and folds into an H-type pseudoknot. Conformational "switching" of the riboswitch aptamer domain upon recognizing its cognate metabolite plays a key role in the regulatory mechanism of the preQ(1) riboswitch. We investigate the folding mechanism of the preQ(1) riboswitch aptamer domain using all-atom Go?-model simulations. The folding pathway of such a single domain is found to be cooperative and sequentially coordinated, as the folding proceeds in the 5' → 3' direction. This kinetically efficient folding mechanism suggests a fast ligand-binding response in competition with RNA elongation.  相似文献   

16.
To reveal the gas-phase chemistry of RNA and DNA fragmentation during MALDI mass spectrometry in positive ion mode, we performed hydrogen/deuterium exchange on a series of RNA and DNA tetranucleotides and studied their fragmentation patterns on a high-resolution MALDI TOF-TOF instrument. We were specifically interested in elucidating the remarkably different fragmentation behavior of RNA and DNA, i.e., the characteristic and abundant production of c- and y-ions from RNA versus a dominating generation of (a-B)- and w-ions from DNA analytes. The analysis yielded important information on all significant backbone cleavages as well as nucleobase losses. Based on this, we suggest common fragmentation mechanisms for RNA and DNA as well as an important RNA-specific reaction requiring a 2'-hydroxyl group, leading to c- and y-ions. The data is viewed and discussed in the context of previously published data to obtain a coherent picture of the fragmentation of singly protonated nucleic acids.  相似文献   

17.
An integrated approach is described that allows the domain-specific incorporation of optical probes into large recombinant proteins. The strategy is the combination of two existing techniques, expressed protein ligation (EPL) and in vivo amino acid replacement of tryptophans with tryptophan (Trp) analogues. The Src homology 3 (SH3) domain from the c-Crk-I adaptor protein has been labeled with a Trp analogue, 7-azatryptophan (7AW), using Escherichia coli Trp auxotrophs. Structural, biochemical, and thermodynamic studies show that incorporation of 7AW does not significantly perturb the structure or function of the isolated domain. Ligation of the 7AW-labeled SH3 domain to the c-Crk-I Src homology 2 (SH2) domain, via EPL, generated the multidomain protein, c-Crk-I, with a domain-specific label. Studies of this labeled protein show that the biochemical and thermodynamic properties of the SH3 domain do not change within the context of a larger multidomain protein. The technology described here is likely to be a useful tool in enhancing our understanding of the behavior of modular domains in their natural context, within multidomain proteins.  相似文献   

18.
19.
The exploration of conformation space performed by a biopolymer becomes rapidly biased towards a confined region and takes place under a stringent schedule incompatible with the thermodynamic limit. The theoretical underpinnings of such properties have been missing to a considerable extent. By introducing anaction principle in the space of folding pathways, we show how folding is guided expeditiously within realistic time frames. The variational principle is constructed in three stages: (a) An appropriate space of folding histories is defined. (b) The space is endowed with a measure and, in this way, an ensemble is defined. (c) This measure induces a Lagrangian which, in turn, defines the underlying action principle. The theory is specialized to account for the expeditious folding of an RNA species resolved to the level of secondary structure. Thus, using the Lagrangian, a time-dependent Base-Pair Probability Matrix (BPPM) is generated. This representational tool is introduced to display all RNA structures contributing to the cross section of the ensemble of pathways at each instant in time. The BPPM is contrastedvis-a-vis experimental information on biologically-competent RNA conformations. The results reveal that the statistical weight is concentrated on a very limited domain of folding pathways which yield the biologically-relevant destination structure within realistic timescales. To conclude, we assess in a preliminary fashion the potential of the action principle as a tool to aid the design of RNA species capable of folding within experimental timeframes.  相似文献   

20.
We summarize some aspects of electrostatic interactions in the context of viruses. A simplified but, within well defined limitations, reliable approach is used to derive expressions for electrostatic energies and the corresponding osmotic pressures in single-stranded RNA viruses and double-stranded DNA bacteriophages. The two types of viruses differ crucially in the spatial distribution of their genome charge which leads to essential differences in their free energies, depending on the capsid size and total charge in a quite different fashion. Differences in the free energies are trailed by the corresponding characteristics and variations in the osmotic pressure between the inside of the virus and the external bathing solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号