首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
On-line gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) is commonly used to measure isotopic ratios at natural abundance as well as for tracer studies in nutritional and medical research. However, high-precision (13)C isotopic enrichment can also be measured by liquid chromatography-isotope ratio mass spectrometry (LC-IRMS). Indeed, LC-IRMS can be used, as shown by the new method reported here, to obtain a baseline separation and to measure (13)C isotopic enrichment of underivatised amino acids (Asp, Thr-Ser, Glu, Pro, Gly, Ala, Cys and Val). In case of Val, at natural abundance, the SD(delta(13)C) reported with this method was found to be below 1 per thousand . Another key feature of the new LC-IRMS method reported in this paper is the comparison of the LC-IRMS approach with the conventional GC-C-IRMS determination. To perform this comparative study, isotopic enrichments were measured from underivatised Val and its N(O, S)-ethoxycarbonyl ethyl ester derivative. Between 0.0 and 1.0 molar percent excess (MPE) (delta(13)C= -12.3 to 150.8 per thousand), the calculated root-mean-square (rms) of SD was 0.38 and 0.46 per thousand and the calculated rms of accuracy was 0.023 and 0.005 MPE, respectively, for GC-C-IRMS and LC-IRMS. Both systems measured accurately low isotopic enrichments (0.002 atom percent excess (APE)) with an SD (APE) of 0.0004. To correlate the relative (delta(13)C) and absolute (atom%, APE and MPE) isotopic enrichment of Val measured by the GC-C-IRMS and LC-IRMS devices, mathematical equations showing the slope and intercept of the curves were established and validated with experimental data between 0.0 to 2.3 MPE. Finally, both GC-C-IRMS and LC-IRMS instruments were also used to assess isotopic enrichment of protein-bound (13)C-Val in tibial epiphysis in a tracer study performed in rats. Isotopic enrichments measured by LC-IRMS and GC-C-IRMS were not statistically different (p>0.05). The results of this work indicate that the LC-IRMS was successful for high-precision (13)C isotopic measurements in tracer studies giving (13)C isotopic enrichment similar to the GC-C-IRMS but without the step of GC derivatisation. Therefore, for clinical studies requiring high-precision isotopic measurement, the LC-IRMS is the method of choice to measure the isotopic ratio.  相似文献   

2.
An inter‐laboratory exercise was carried out by a consortium of five European laboratories to establish a set of compounds, suitable for calibrating gas chromatography/combustion/isotope ratio mass spectrometry (GC‐C‐IRMS) devices, to be used as isotopic reference materials for hydrogen, carbon, nitrogen and oxygen stable isotope measurements. The set of compounds was chosen with the aim of developing a mixture of reference materials to be used in analytical protocols to check for food and beverage authentication. The exercise was organized in several steps to achieve the certification level: the first step consisted of the a priori selection of chemical compounds on the basis of the scientific literature and successive GC tests to set the analytical conditions for each single compound and the mixture. After elimination of the compounds that turned out to be unsuitable in a multi‐compound mixture, some additional oxygen‐ and nitrogen‐containing substances were added to complete the range of calibration isotopes. The results of δ13C determinations for the entire set of reference compounds have previously been published, while the δD and δ18O determinations were unsuccessful and after statistical analysis of the data the results did not reach the level required for certification. In the present paper we present the results of an inter‐laboratory exercise to identify and test the set of nitrogen‐containing compounds present in the mixture developed for use as reference materials for the validation of GC‐C‐IRMS analyses in individual laboratories. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
An alternative calibration procedure for use when performing carbon isotope ratio measurements by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) has been developed. This calibration procedure does not rely on the corrections in-built in the instrument software, as the carbon isotope ratios of a sample are calculated from the measured raw peak areas. The method was developed for the certification of a urine reference material for sports drug testing, as the estimation of measurement uncertainty is greatly simplified. To ensure that the method is free from bias arising from the choice of calibration material and instrument, the carbon isotope ratios of steroids in urine extracts were measured using two different instruments in different laboratories, and three different reference materials (CU/USADA steroid standards from Brenna Laboratory, Cornell University; NIST RM8539 mineral oil; methane calibrated against NIST RM8560 natural gas). The measurements were performed at LGC and the Australian National Measurement Institute (NMI). It was found that there was no significant difference in measurement results when different instruments and reference materials were used to measure the carbon isotope ratio of the major testosterone metabolites androsterone and etiocholanolone, or the endogenous reference compounds pregnanediol, 11- ketoetiocholanolone and 11β-hydroxyandrosterone. Expanded measurement uncertainties at the 95% coverage probability ranged from 0.21‰ to 1.4‰, depending on analyte, instrument and reference material. The measurement results of this comparison were used to estimate a measurement uncertainty of δ(13)C for the certification of the urine reference material being performed on a single instrument using a single reference material at NMI.  相似文献   

4.
V Ferchaud  B Le Bizec  F Monteau  F André 《The Analyst》1998,123(12):2617-2620
A new approach was developed in order to control testosterone abuse in animal production. A gas chromatographic-combustion-isotope ratio mass spectrometric (GC-C-IRMS) method was used to distinguish the exogenous character from the endogenous character of the main metabolites of testosterone (epitestosterone and etiocholanolone) in cattle urine. This method is based on a comparison between the carbon isotope ratio (13C/12C) of testosterone metabolites and those of testosterone endogenous precursors. After urinary steroid purification, extracts were acetylated with acetic anhydride and injected into the GC-C-IRMS system. In order to validate the method, testosterone enanthate was administered to a 4 year old cow. The 13C/12C isotope ratios of testosterone exogenous metabolites appeared to be significantly different to the 13C/12C precursor ratios and were detected until 3 weeks after the anabolic administration. These preliminary results appear to be promising for the difficult control of natural hormones in livestock.  相似文献   

5.
The application of carbon isotope ratio mass spectrometry to doping control   总被引:1,自引:0,他引:1  
The administration of synthetic steroid copies is one of the most important issues facing sports. Doping control laboratories accredited by the World Anti-Doping Agency (WADA) require methods of analysis that allow endogenous steroids to be distinguished from their synthetic analogs in urine. The ability to measure isotope distribution at natural abundance with high accuracy and precision has increased the application of Gas Chromatography-Combustion-Isotope Ratio Mass Spectrometry (GC-C-IRMS) to doping control in recent years. GC-C-IRMS is capable of measuring the carbon isotope ratio (delta(13)C) of urinary steroids and confirm their synthetic origin based on the abnormal (13)C content. This tutorial describes some of the complexities encountered by obtaining valid delta(13)C measurements from GC-C-IRMS and the need for careful interpretation of all relevant information concerning an individual's metabolism in order to make an informed decision with respect to a doping violation.  相似文献   

6.
Applied gas chromatography coupled to isotope ratio mass spectrometry.   总被引:6,自引:0,他引:6  
Compound-specific isotope analysis (CSIA) by isotope ratio mass spectrometry (IRMS) following on-line combustion (C) of compounds separated by gas chromatography (GC) is a relatively young analytical method. Due to its ability to measure isotope distribution at natural abundance level with great accuracy and high precision, GC-C-IRMS has increasingly become the method of choice in authenticity control of foodstuffs and determination of origin in archaeology, geochemistry, and environmental chemistry. In combination with stable isotope labelled compounds, GC-C-IRMS is also used more and more in biochemical and biomedical application as it offers a reliable and risk-free alternative to the use of radioactive tracers. The literature on these topics is reviewed from the advent of commercial GC-C-IRMS systems in 1990 up to the beginning of 1998. Demands on sample preparation and quality of GC separation for GC-C-IRMS are discussed also.  相似文献   

7.
Gas chromatography/combustion/isotope ratio mass spectrometry (GC-C-IRMS) is a highly sensitive approach which allows the analysis of the (13)C/(12)C and (15)N/(14)N isotope composition of amino acids in the range of natural abundance or in slightly (13)C- and (15)N-enriched samples. However, the accuracy of measurements remains a permanent challenge. Here we show the effect of the presence of slightly (15)N-enriched compounds in physiological samples on the accuracy and reproducibility of (15)N-abundances of amino acids within or between analytical runs. We spiked several individual amino acids with the respective (15)N-labelled isotopomer and measured the (15)N/(14)N ratios of other amino acids in the same sample or in the following analytical runs. Intra- and inter-run memory effects can be observed in (15)N/(14)N ratios of amino acids. Sample throughput is reduced when cleaning runs using standard mixtures are required to restore initial conditions after runs of samples with (15)N-enriched analytes. Possible reasons for the observed phenomenon and its implications for work in the lower (15)N-enrichment range (<0.5 APE) are discussed and include different aspects of gas chromatography, derivatisation, and hot catalytic metal surface effects. Results need to be interpreted with caution if complex physiological samples contain (15)N-enriched amino acids beyond 500‰ δ(15)N (~0.18 APE).  相似文献   

8.
Black carbon (BC) is a complex continuum of partly charred organic matter predominantly consisting of condensed aromatic and graphitic moieties and it has high potential for long-term carbon sequestration in soils and sediments. There has been common agreement that BC is exclusively formed by incomplete combustion of organic matter, while non-pyrogenic sources are negligible. In this study, we investigated the stable carbon isotope signature of benzenepolycarboxylic acids (BPCAs) as molecular markers for BC to test if there is also a significant contribution of non-pyrogenic carbon to this fraction in soils. BPCAs were formed by hot nitric acid oxidation of different soils and analyzed by three different procedures: (i) elemental analysis - isotope ratio mass spectrometry (EA-IRMS) of bulk BPCAs and gas chromatography - combustion - isotope ratio mass spectrometry (GC-C-IRMS) of (ii) BPCA trimethylsilyl (TMS) derivatives, and (iii) BPCA methyl derivatives. Best accuracy and precision of isotope measurements were obtained by EA-IRMS of bulk BPCAs although this method has a risk of contamination by non-BC-derived compounds. The accuracy and precision of GC-C-IRMS measurements were superior for methyl derivatives (+/-0.1 per thousand and 0.5 per thousand, respectively) to those for TMS derivatives (+3.5 per thousand and 2.2 per thousand, respectively).Comparison of BPCA delta(13)C values of soil samples prior to and after laboratory and field incubations with both positive and negative (13)C labels at natural and artificial abundances revealed that up to 25% of the isolated BC fraction in soils had been produced in situ, without fire or charring. Commonly applied methods to quantify BC exclusively formed by pyrogenic processes may thus be biased by a significant non-pyrogenic fraction. Further research is encouraged to better define isolated BC fractions and/or understand mechanisms for non-pyrogenic BC production in soils.  相似文献   

9.
A novel method for deducing the origins of heroin and the reagent used for acetylation was established based on delta(13)C determinations of heroin and its hydrolysate, morphine, using gas chromatography (13)C isotope ratio mass spectrometry (GC-C-IRMS). The alkaline and acid hydrolysis conditions of heroin were optimized. Both yield and purity of morphine produced could meet the requirement for a GC-C-IRMS analysis. Using (2-diethylaminoethyl-2,2- diphenylvalerate) as internal standard the determinations of heroin and morphine contents were performed with a GC method in a linear range of 0.2 to 2.0 mg ml(1) that was required to gain the isotope ratio results. The hydrolysis and synthesis of heroin did not change the delta(13)C value of morphine. The precision for delta(13)C detection of both heroin and morphine was sufficient for origin differentiation of heroin samples. The information about the origins of acetylation reagents could be deduced from the difference of delta(13)C values between heroin and morphine. The results for origin differentiation of 10 heroin samples grouped into different regions and their acetylating agents were satisfactory.  相似文献   

10.
α-Hexachlorocyclohexane (α-HCH) is the only chiral isomer of the eight 1,2,3,4,5,6-HCHs and we have developed an enantiomer-specific stable carbon isotope analysis (ESIA) method for the evaluation of its fate in the environment. The carbon isotope ratios of the α-HCH enantiomers were determined for a commercially available α-HCH sample using a gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) system equipped with a chiral column. The GC-C-IRMS measurements revealed δ-values of -32.5 ± 0.8‰ and -32.3 ± 0.5‰ for (-) α-HCH and (+) α-HCH, respectively. The isotope ratio of bulk α-HCH was estimated to be -32.4 ± 0.6‰ which was in accordance with the δ-values obtained by GC-C-IRMS (-32.7 ± 0.2‰) and elemental analyzer-isotope ratio mass spectrometry (EA-IRMS) of the bulk α-HCH (-32.1 ± 0.1‰). The similarity of the isotope ratio measurements of bulk α-HCH by EA-IRMS and GC-C-IRMS indicates the accuracy of the chiral GC-C-IRMS method. The linearity of the α-HCH ESIA method shows that carbon isotope ratios can be obtained for a signal size above 100 mV. The ESIA measurements exhibited standard deviations (2σ) that were mostly < ± 0.5‰. In order to test the chiral GC-C-IRMS method, the isotope compositions of individual enantiomers in biodegradation experiments of α-HCH with Clostridium pasteurianum and samples from a contaminated field site were determined. The isotopic compositions of the α-HCH enantiomers show a range of enantiomeric and isotope patterns, suggesting that enantiomeric and isotope fractionation can serve as an indicator for biodegradation and source characterization of α-HCH in the environment.  相似文献   

11.
A series of intramolecularly hydrogen-bonded N-substituted 3-(piperidine, morpholine, N-methylpiperazine)thiopropionamides and some corresponding amides have been studied with special emphasis on hydrogen bonding. The compounds have been selected in order to vary and to minimize the N...N distance. Geometries, charge distributions, and chemical shifts of these compounds are obtained from DFT-type BP3LYP calculations. 1H and 13C 1D and 2D NMR experiments were performed to obtain H,H coupling constants, 13C chemical shifts assignments, and deuterium isotope effects on13C chemical shifts. Variable-temperature NMR studies and 2D exchange NMR spectra have been used to describe the rather complicated conformational behavior mainly governed by the ring flipping of the piperidine (morpholine) rings and intramolecular hydrogen bonding. Unusual long-range deuterium isotope effects on 13C chemical shifts are observed over as far as eight bonds away from the site of deuteriation. The isotope effects are related to the N...N distances, thus being related to the hydrogen bonding and polarization of the N-H bond. Arguments are presented showing that the deuterium isotope effects on 13C chemical shifts originate in electric field effects.  相似文献   

12.
Authenticity assessment of flavoured strawberry foods was performed using headspace-solid phase microextraction (HS-SPME) coupled to gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). An authenticity range was achieved, investigating on the carbon isotope ratio of numerous selected aroma active volatile components (methyl butanoate, ethyl butanoate, hex-(2E)-enal, methyl hexanoate, buthyl butanoate, ethyl hexanoate, hexyl acetate, linalool, hexyl butanoate, octyl isovalerate, γ-decalactone and octyl hexanoate) of organic Italian fresh strawberries. To the author's knowledge, this is the first time that all these components were investigated simultaneously by GC-C-IRMS on the same sample. The results were compared, when applicable, with those obtained by analyzing the HS-SPME extracts of commercial flavoured food matrices. In addition, one Kenyan pineapple and one fresh Italian peach were analyzed to determine the δ(13)C(VPDB) of the volatile components common to strawberry. The δ(13)C(VPDB) values are allowed to differentiate between different biogenetic pathways (C(3) and CAM plants) and more interestingly between plants of the same CO(2) fixation group (C(3) plants). Additional analyses were performed on all the samples by means of Enantioselective Gas Chromatography (Es-GC), measuring the enantiomeric distribution of linalool and γ-decalactone. It was found that GC-C-IRMS and Es-GC measurements were in agreement to detect the presence of non-natural strawberry aromas in the food matrices studied.  相似文献   

13.
The present study was aimed to investigate the variation of stable isotopic ratios of carbon, nitrogen, hydrogen, and oxygen in wheat kernel along with different processed fractions from three geographical origins across 5 years using isotope ratio mass spectrometry (IRMS). Multiway ANOVA revealed significant differences among region, harvest year, processing, and their interactions for all isotopes. The region contributed the major variability in the δ13C ‰, δ2H ‰, δ15N ‰, and δ18O‰ values of wheat. Variation of δ13C ‰, δ15N ‰, and δ18O ‰ between wheat whole kernel and its products (break, reduction, noodles, and cooked noodles) were ?0.7‰, and no significant difference was observed, suggesting the reliability of these isotope fingerprints in geographical traceability of wheat‐processed fractions and foods. A significant influence of wheat processing was observed for δ2H values. By applying linear discriminant analysis (LDA) to the whole dataset, the generated model correctly classified over 91% of the samples according to the geographical origin. The application of these parameters will assist in the development of an analytical control procedure that can be utilized to control the mislabeling regarding geographical origin of wheat kernel and its products.  相似文献   

14.
Compound-specific stable isotope analysis (CSIA) using gas chromatography-isotope ratio mass spectrometry (GC/IRMS) has developed into a mature analytical method in many application areas over the last decade. This is in particular true for carbon isotope analysis, whereas measurements of the other elements amenable to CSIA (hydrogen, nitrogen, oxygen) are much less routine. In environmental sciences, successful applications to date include (i) the allocation of contaminant sources on a local, regional, and global scale, (ii) the identification and quantification of (bio)transformation reactions on scales ranging from batch experiments to contaminated field sites, and (iii) the characterization of elementary reaction mechanisms that govern product formation. These three application areas are discussed in detail. The investigated spectrum of compounds comprises mainly n-alkanes, monoaromatics such as benzene and toluene, methyl tert-butyl ether (MTBE), polycyclic aromatic hydrocarbons (PAHs), and chlorinated hydrocarbons such as tetrachloromethane, trichloroethylene, and polychlorinated biphenyls (PCBs). Future research directions are primarily set by the state of the art in analytical instrumentation and method development. Approaches to utilize HPLC separation in CSIA, the enhancement of sensitivity of CSIA to allow field investigations in the µg L–1 range, and the development of methods for CSIA of other elements are reviewed. Furthermore, an alternative scheme to evaluate isotope data is outlined that would enable estimates of position-specific kinetic isotope effects and, thus, allow one to extract mechanistic chemical and biochemical information.Abbreviations BTEX benzene, toluene, ethylbenzene, xylenes - MTBE methyl tert-butyl ether - PAHs polycyclic aromatic hydrocarbons - VOCs volatile compounds - PCBs polychlorinated biphenyls - CSIA compound-specific (stable) isotope (ratio) analysis - GC-IRMS, GC/IRMS or GCIRMS gas chromatography-isotope ratio mass spectrometry - GC-C-IRMS, GC/C/IRMS or GCC-IRMS gas chromatography-combustion-isotope ratio mass spectrometry - irmGC/MS isotope ratio monitoring gas chromatograph-mass spectrometry - GC/P/IRMS gas chromatography-pyrolysis-isotope ratio mass spectrometry (used for D/H) - KIE kinetic isotope effect - PSIA position-specific isotope analysis (for intramolecular isotope distribution) - SNIF-NMR site-specific natural isotopic fractionation by nuclear magnetic resonance spectroscopy  相似文献   

15.
In this paper we present an overview of the present knowledge relating to methods that avoid interference of N2O on delta13C and delta18O measurements of CO2. The main focus of research to date has been on atmospheric samples. However, N2O is predominantly generated by soil processes. Isotope analyses related to soil trace gas emissions are often performed with continuous flow isotope ratio mass spectrometers, which do not necessarily have the high precision needed for atmospheric research. However, it was shown by using laboratory and field samples that a correction to obtain reliable delta13C and delta18O values is also required for a commercial continuous flow isotope ratio mass spectrometer. The capillary gas chromatography column of the original equipment was changed to a packed Porapak Q column. This adaptation resulted in an improved accuracy and precision of delta13C (standard deviation(Ghent): from 0.2 to 0.08 per thousand; standard deviation(Lincoln): from 0.2 to 0.13 per thousand) of CO2 for N2O/CO2 ratios up to 0.1. For delta18O there was an improvement for the standard deviation measured at Ghent University (0.13 to 0.08 per thousand) but not for the measurements at Lincoln University (0.08 to 0.23 per thousand). The benefits of using the packed Porapak Q column compared with the theoretical correction method meant that samples were not limited to small N(2)O concentrations, they did not require an extra N2O concentration measurement, and measurements were independent of the variable isotopic composition of N2O from soil.  相似文献   

16.
In order to investigate the requirements for soft deposition of intact positively charged organic macromolecules, an homogenous series of modal compounds such as polyphenylene dendronized perylenes (PDPs), C(80)H(52), C(200)H(132) and C(320)H(212) and a series of derivatives involving perylene derivative, C(98)H(104)N(8)O(4), terrylene derivative, C(78)H(82)N(6)O(4) and quaterrylene derivative, C(140)H(138)N(10)O(8), were used for soft-landing experiments on a metallic or matrix coated surface using fast atom bombardment mass spectrometry. Soft-landing can be achieved at impact energies below 180 eV with no production of fragments. The deposition rate shows strong energy dependence with similar behavior of the different organic compounds. A single isotope of the molecule was selected and soft-landed at increased resolution.  相似文献   

17.
An alternative calibration procedure for the Gas Chromatography–Combustion–Isotope Ratio Mass Spectrometry (GC–C–IRMS) measurements of the World Antidoping Agency (WADA) Accredited Laboratories is presented. To alleviate the need for externally calibrated CO2 gas for GC–C–IRMS analysis of urinary steroid metabolites, calibration using an external standard mixture solution of steroids with certified isotopic composition was investigated. The reference steroids of the calibration mixture and routine samples underwent identical instrumental processes. The calibration standards bracketed the entire range of the relevant δ13C values for the endogenous and exogenous steroids as well as their chromatographic retention times. The certified δ13C values of the reference calibrators were plotted in relation to measured m/z13CO2/12CO2 (i.e. R(45/44)) mass spectrometric signals of each calibrator. δ13C values of the sample steroids were calculated from the least squares fit through the calibration curve. The effect of the external calibration on δ13C values, using the same calibration standards and set of urine samples but different brands of GC–C–IRMS instruments, was assessed by an interlaboratory study in the WADA Accredited Laboratories of Sydney, Australia and Athens, Greece. Relative correspondence between the laboratories for determination of androsterone, etiocholanolone, 5β-androstane-3α,17β-diacetate, and pregnanediacetate means were SD(δ13C) = 0.12‰, 0.58‰, −0.34‰, and −0.40‰, respectively. These data demonstrate that accurate intralaboratory external calibration with certified steroids provided by United States Antidoping Agency (USADA) and without external CO2 calibration is feasible and directly applicable to the WADA Accredited Laboratories for the harmonization of the GC–C–IRMS measurements.  相似文献   

18.
There is a growing interest in the use of (13)C-enriched substrates to investigate metabolic processes in humans. The non-invasive nature of (13)C breath tests makes them attractive to clinicians, particularly because they can be safely used in children. The availability of suitable (13)C-enriched substrates can limit the application of this biotechnology. We have used isotope ratio mass spectrometry to assay the chemical purity and isotopic enrichment of substrates that were synthesised to study gut transit and colonic fermentation. Lactose ureide and lactose [(13)C]ureide were synthesised by acid-catalysed condensation of lactose and urea or (13)C urea, respectively. Glucose ureide and glucose [(13)C]ureide were synthesised by similar methods but required an additional purification step to remove urea of crystallisation. Substrates were analysed by standard analytical techniques and combustion isotope ratio mass spectrometry for carbon and nitrogen content and (13)C-enrichment. Monitoring the C/N ratio proved to be a sensitive assay of chemical purity. Analysis of the percentage composition of C and N (and hence O + H) suggested that lactose ureide crystallises as the dihydrate. It was synthesised with approximately 99% chemical purity and with the theoretical enrichment. Glucose ureide was synthesised with approximately 98% chemical purity but with lower than theoretical enrichment.  相似文献   

19.
An international collaborative study of isotopic methods applied to control the authenticity of vinegar was organized in order to support the recognition of these procedures as official methods. The determination of the 2H/1H ratio of the methyl site of acetic acid by SNIF-NMR (site-specific natural isotopic fractionation-nuclear magnetic resonance) and the determination of the 13C/12C ratio, by IRMS (isotope ratio mass spectrometry) provide complementary information to characterize the botanical origin of acetic acid and to detect adulterations of vinegar using synthetic acetic acid. Both methods use the same initial steps to recover pure acetic acid from vinegar. In the case of wine vinegar, the determination of the 18O/16O ratio of water by IRMS allows to differentiate wine vinegar from vinegars made from dried grapes. The same set of vinegar samples was used to validate these three determinations.The precision parameters of the method for measuring δ13C (carbon isotopic deviation) were found to be similar to the values previously obtained for similar methods applied to wine ethanol or sugars extracted from fruit juices: the average repeatability (r) was 0.45 ‰, and the average reproducibility (R) was 0.91‰. As expected from previous in-house study of the uncertainties, the precision parameters of the method for measuring the 2H/1H ratio of the methyl site were found to be slightly higher than the values previously obtained for similar methods applied to wine ethanol or fermentation ethanol in fruit juices: the average repeatability was 1.34 ppm, and the average reproducibility was 1.62 ppm. This precision is still significantly smaller than the differences between various acetic acid sources (δ13C and δ18O) and allows a satisfactory discrimination of vinegar types. The precision parameters of the method for measuring δ18O were found to be similar to the values previously obtained for other methods applied to wine and fruit juices: the average repeatability was 0.15‰, and the average reproducibility was 0.59‰. The above values are proposed as repeatability and reproducibility limits in the current state of the art.On the basis of this satisfactory inter-laboratory precision and on the accuracy demonstrated by a spiking experiment, the authors recommend the adoption of the three isotopic determinations included in this study as official methods for controlling the authenticity of vinegar.  相似文献   

20.
Intramolecular NH…O,S,N interactions in non-tautomeric systems are reviewed in a broad range of compounds covering a variety of NH donors and hydrogen bond acceptors. 1H chemical shifts of NH donors are good tools to study intramolecular hydrogen bonding. However in some cases they have to be corrected for ring current effects. Deuterium isotope effects on 13C and 15N chemical shifts and primary isotope effects are usually used to judge the strength of hydrogen bonds. Primary isotope effects are investigated in a new range of magnitudes. Isotope ratios of NH stretching frequencies, νNH/ND, are revisited. Hydrogen bond energies are reviewed and two-bond deuterium isotope effects on 13C chemical shifts are investigated as a possible means of estimating hydrogen bond energies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号