首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Sequence-specific labeling of DNA is of immense interest for analytical and functional studies of DNA. We present a novel approach for sequence-specific labeling of DNA using a newly designed fluorescent cofactor for the DNA methyltransferase from Thermus aquaticus (M.TaqI). Naturally, M.TaqI catalyzes the nucleophilic attack of the exocyclic amino group of adenine within the double-stranded 5'-TCGA-3' DNA sequence onto the methyl group of the cofactor S-adenosyl-L-methionine (AdoMet) leading to methyl group transfer. The design of a new fluorescent cofactor for covalent labeling of DNA was based on three criteria: (1) Replacement of the methionine side chain of the natural cofactor AdoMet by an aziridinyl residue leads to M.TaqI-catalyzed nucleophilic ring opening and coupling of the whole nucleoside to DNA. (2) The adenosyl moiety is the molecular anchor for cofactor binding. (3) Attachment of a fluorophore via a flexible linker to the 8-position of the adenosyl moiety does not block cofactor binding. According to these criteria the new fluorescent cofactor 8-amino[1'-(N'-dansyl)-4'-aminobutyl]-5'-(1-aziridinyl)-5'-deoxyadenosine (3) was synthesized. 3 binds about 4-fold better than the natural cofactor AdoMet to M.TaqI and is coupled with a short duplex oligodeoxynucleotide by M.TaqI. The identity of the expected modified nucleoside was verified by electrospray ionization mass spectrometry after enzymatic fragmentation of the product duplex. In addition, the new cofactor 3 was used to sequence-specifically label plasmid DNA in a M.TaqI-catalyzed reaction.  相似文献   

2.
M.PvuII is a DNA methyltransferase from the bacterium Proteus vulgaris that catalyzes methylation of cytosine at the N4 position. This enzyme also displays promiscuous activity catalyzing methylation of adenine at the N6 position. In this work we use QM/MM methods to investigate the reaction mechanism of this promiscuous activity. We found that N6 methylation in M.PvuII takes place by means of a stepwise mechanism in which deprotonation of the exocyclic amino group is followed by the methyl transfer. Deprotonation involves two residues of the active site, Ser53 and Asp96, while methylation takes place directly from the AdoMet cofactor to the target nitrogen atom. The same reaction mechanism was described for cytosine methylation in the same enzyme, while the reversal timing, that is methylation followed by deprotonation, has been described in M.TaqI, an enzyme that catalyzes the N6-adenine DNA methylation from Thermus aquaticus. These mechanistic findings can be useful to understand the evolutionary paths followed by N-methyltransferases.  相似文献   

3.
We report here an isotopic labeling and mass spectrometric method to rapidly identify S-adenosylmethionine (AdoMet)-dependent methylation products. In the presence of CH(3)- and CD(3)-labeled AdoMet, a methyl transfer product appears as a doublet separated by 3 Da in a mass spectrum, while other compounds show their normal isotopic distribution. Based on this unique isotopic pattern, methylation product(s) can be easily detected even from a mixture of cellular components. To validate our method, the product of human thiopurine methyltransferase (TPMT, EC 2.1.1.67) has been successfully identified from both an in vitro assay and a whole-cell assay. This method is generally applicable to AdoMet-dependent transmethylation and other group-transfer reactions, and constitutes the first example of a general strategy of enzyme-transferred isotope patterns (ETIPs) analysis.  相似文献   

4.
Methyltransferases (MTases) form a large family of enzymes that methylate a diverse set of targets, ranging from the three major biopolymers to small molecules. Most of these MTases use the cofactor S‐adenosyl‐l ‐Methionine (AdoMet) as a methyl source. In recent years, there have been significant efforts toward the development of AdoMet analogues with the aim of transferring moieties other than simple methyl groups. Two major classes of AdoMet analogues currently exist: doubly‐activated molecules and aziridine based molecules, each of which employs a different approach to achieve transalkylation rather than transmethylation. In this review, we discuss the various strategies for labelling and functionalizing biomolecules using AdoMet‐dependent MTases and AdoMet analogues. We cover the synthetic routes to AdoMet analogues, their stability in biological environments and their application in transalkylation reactions. Finally, some perspectives are presented for the potential use of AdoMet analogues in biology research, (epi)genetics and nanotechnology.  相似文献   

5.
A distinct protein lysine methyltransferase (PKMT) only transfers a certain number of methyl group(s) to its target lysine residue in spite of the fact that a lysine residue can be either mono-, di-, or tri-methylated. In order to elucidate how such a remarkable product specificity is achieved, we have carried out ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations on two SET-domain PKMTs: SET7/9 and Rubisco large subunit methyltransferase (LSMT). The results indicate that the methylation state specificity is mainly controlled by the methyl-transfer reaction step, and confirm that SET7/9 is a mono-methyltransferase while LSMT has both mono-and di-methylation activities. It is found that the binding of the methylated lysine substrate in the active site of SET7/ 9 opens up the cofactor AdoMet binding channel so that solvent water molecules get access to the active site. This disrupts the catalytic machinery of SET7/9 for the di-methylation reaction, which leads to a higher activation barrier, whereas for the LSMT, its active site is more spacious than that of SET7/9, so that the methylated lysine substrate can be accommodated without interfering with its catalytic power. These detailed insights take account of protein dynamics and are consistent with available experimental results as well as recent theoretical findings regarding the catalytic power of SET7/9.  相似文献   

6.
S ‐Adenosylmethionine (SAM) is one of the most common co‐substrates in enzyme‐catalyzed methylation reactions. Most SAM‐dependent reactions proceed through an SN2 mechanism, whereas a subset of them involves radical intermediates for methylating non‐nucleophilic substrates. Herein, we report the characterization and mechanistic investigation of NosN, a class C radical SAM methyltransferase involved in the biosynthesis of the thiopeptide antibiotic nosiheptide. We show that, in contrast to all known SAM‐dependent methyltransferases, NosN does not produce S ‐adenosylhomocysteine (SAH) as a co‐product. Instead, NosN converts SAM into 5′‐methylthioadenosine as a direct methyl donor, employing a radical‐based mechanism for methylation and releasing 5′‐thioadenosine as a co‐product. A series of biochemical and computational studies allowed us to propose a comprehensive mechanism for NosN catalysis, which represents a new paradigm for enzyme‐catalyzed methylation reactions.  相似文献   

7.
S‐Adenosylmethionine‐dependent methyltransferases are versatile tools for the specific alkylation of many compounds, such as pharmaceuticals, but their biocatalytic application is severely limited owing to the lack of a cofactor regeneration system. We report a biomimetic, polyphosphate‐based, cyclic cascade for methyltransferases. In addition to the substrate to be methylated, only methionine and polyphosphate have to be added in stoichiometric amounts. The system acts catalytically with respect to the cofactor precursor adenosine in methylation and ethylation reactions of selected substrates, as shown by HPLC analysis. Furthermore, 1H and 13C NMR measurements were performed to unequivocally identify methionine as the methyl donor and to gain insight into the selectivity of the reactions. This system constitutes a vital stage in the development of economical and environmentally friendly applications of methyltransferases.  相似文献   

8.
Adenosine analogues bearing either 5'-aziridine or 5'-N-mustard electrophiles are methyltransferase-dependent DNA alkylating agents. We present here a novel synthetic cofactor bearing a pendant 5'-amino acid N-mustard. Unlike previously studied synthetic cofactors, this material is very efficiently used by the natural product biosynthetic enzyme rebeccamycin methyltransferase (RebM) to generate a number of new rebeccamycin analogues. These data promote the notion that natural product methyltransferases can be used with non-natural cofactors to enhance the molecular diversity of natural product analogues for drug discovery. To our knowledge, this is the first documentation of a biological methyltransferase, other than DNA methyltransferases, that can exploit such synthetic cofactors.  相似文献   

9.
10.
Methyltransferases have proven useful to install functional groups site‐specifically in different classes of biomolecules when analogues of their cosubstrate S‐adenosyl‐l ‐methionine (AdoMet) are available. Methyltransferases have been used to address different classes of RNA molecules selectively and site‐specifically, which is indispensable for biophysical and mechanistic studies as well as labeling in the complex cellular environment. However, the AdoMet analogues are not cell‐permeable, thus preventing implementation of this strategy in cells. We present a two‐step enzymatic cascade for site‐specific mRNA modification starting from stable methionine analogues. Our approach combines the enzymatic synthesis of AdoMet with modification of the 5′ cap by a specific RNA methyltransferase in one pot. We demonstrate that a substrate panel including alkene, alkyne, and azido functionalities can be used and further derivatized in different types of click reactions.  相似文献   

11.

Background  

Though Dnmt1 is considered the primary maintenance methyltransferase and Dnmt3a and Dnmt3b are considered de novo methyltransferases in mammals, these three enzymes may work together in maintaining as well as establishing DNA methylation patterns. It has been proposed that Dnmt1 may carry out de novo methylation at sites in the genome with transient single-stranded regions, such as replication origins, and then spread methylation from these nucleation sites in vivo, even though such activity has not been reported.  相似文献   

12.
Li W  Ye W  Schneller SW 《Tetrahedron》2012,68(1):65-71
S-Adenosylmethionine (AdoMet) is a ubiquitous cofactor in biomethylations and, in that role, becomes S-adenosylhomocysteine (AdoHcy), which serves as a biofeedback inhibitor of the methylation process. In seeking to avail unexplored structural variations of AdoHcy for biological studies, its 6'-oxa analog and two corresponding carbocyclic nucleosides (based on aristeromycin and neplanocin) have been prepared via common convergent syntheses.  相似文献   

13.
Methyl transfer reactions are important in a number of biochemical pathways. An important class of methyltransferases uses the cobalt cofactor cobalamin, which receives a methyl group from an appropriate methyl donor protein to form an intermediate organometallic methyl-Co bond that subsequently is cleaved by a methyl acceptor. Control of the axial ligation state of cobalamin influences both the mode (i.e., homolytic vs heterolytic) and the rate of Co-C bond cleavage. Here we have studied the axial ligation of a corrinoid iron-sulfur protein (CFeSP) that plays a key role in energy generation and cell carbon synthesis by anaerobic microbes, such as methanogenic archaea and acetogenic bacteria. This protein accepts a methyl group from methyltetrahydrofolate forming Me-Co(3+)CFeSP that then donates a methyl cation (Me) from Me-Co(3+)CFeSP to a nickel site on acetyl-CoA synthase. To unambiguously establish the binding scheme of the corrinoid cofactor in the CFeSP, we have combined resonance Raman, magnetic circular dichroism, and EPR spectroscopic methods with computational chemistry. Our results clearly demonstrate that the Me-Co3+ and Co2+ states of the CFeSP have an axial water ligand like the free MeCbi+ and Co(2+)Cbi+ cofactors; however, the Co-OH2 bond length is lengthened by about 0.2 angstroms for the protein-bound cofactor. Elongation of the Co-OH2 bond of the CFeSP-bound cofactor is proposed to make the cobalt center more "Co1+-like", a requirement to facilitate heterolytic Co-C bond cleavage.  相似文献   

14.
15.
Spore photoproduct (SP) lyase, which catalyzes the direct reversal of SP (5-thyminyl-5,6-dihydrothymine) to thymine monomers, is the only identified nonphotoactivatable pyrimidine dimer lyase. Unlike DNA photolyase, SP lyase does not contain a flavin cofactor and does not require light for activation. Instead, preliminary studies point to the presence of an iron-sulfur cluster in SP lyase and the requirement for S-adenosylmethionine (AdoMet) for catalytic activity, suggesting that SP lyase belongs to the growing group of iron-sulfur cluster and AdoMet-dependent radical enzymes. Here we provide evidence for the role of AdoMet as a reversible deoxyadenosyl radical generator, which initiates repair by hydrogen atom abstraction from C-6 of SP. Reaction of 6-(3)H-SP, but not methyl-(3)H-SP, with SP lyase and AdoMet results in transfer of (3)H to AdoMet, while no tritiated 5'-deoxyadenosine is observed. When 5'-tritiated AdoMet is used in the reaction with unlabeled SP, transfer of (3)H into the repaired thymine monomers is observed. These results point to the reversible generation of a 5'-deoxyadenosyl radical intermediate, which reacts directly with the DNA lesion to initiate a radical-mediated beta-scission. We also demonstrate that AdoMet is a catalytic cofactor that is not consumed during turnover. Together, these results support a novel radical-based mechanism for the repair of UV-induced DNA damage.  相似文献   

16.
脱氧核糖核酸( DNA)甲基化是表观遗传改变的主要作用方式,在基因表达调控、基因组印迹、胚胎发育、维持正常细胞功能等过程中起着极其重要的作用;异常甲基化可以导致肿瘤的发生、发展.因此,探讨甲基化形成与改变的可能机制,建立准确性好、灵敏度高、操作简单的DNA甲基化分析方法,可为某些肿瘤的早期诊断提供重要依据.本文综述了D...  相似文献   

17.
DFT calculations for methyl cation complexed within a constrained cage of water molecules permit the controlled manipulation of the “axial” donor/acceptor distance and the “equatorial” distance to hydrogen‐bond acceptors. The kinetic isotope effect k(CH3)/k(CT3) for methyl transfer within a cage with a short axial distance becomes less inverse for shorter equatorial C???O distances: a decrease of 0.5 Å results in a 3 % increase at 298 K. Kinetic isotope effects in AdoMet‐dependent methyltransferases may be m∧odulated by CH???O hydrogen bonding, and factors other than axial compression may contribute, at least partially, to recently reported isotope‐effect variations for catechol‐O‐methyltransferase and its mutant structures.  相似文献   

18.
The multifunctional polypeptide cyclosporin synthetase (CySyn) remains one of the most complex nonribosomal peptide synthetase described. In this study we used a highly specific photoaffinity labeling procedure with the natural cofactor S-adenosyl-L-methionine (AdoMet), 14C-isotopically labeled at the Sdelta methyl group to probe the concerted AdoMet-binding interaction of the N-methyltransferase (N-MTase) centers of CySyn. The binding stoichiometry for the enzyme-AdoMet complex was determined to be 1:7, which is in agreement with inferences made from analysis of the complementary DNA sequence of the simA gene encoding the CySyn polypeptide. The photolabeling of the AdoMet-binding sites displayed homotropic negative cooperativity, characterized by a curvilinear Scatchard plot with upward concavity. Although, the process of N-methyl transfer is not a critical event for peptide elongation, the destabilizing homotropic interactions between N-MTase centers that were observed may represent a mechanism whereby the enzyme preserves the proficiency of the substrate-channeling process of cyclosporin peptide assembly over a broad range of cofactor concentrations. Furthermore, we demonstrated the utility of the photolabeling procedure for tracking the enzyme during purification.  相似文献   

19.
How to outwit a methyltransferase: Methyltransferases (Mtases) catalyze the transfer of the activated methyl group from the cofactor S-adenosyl-L -methionine ( 1 ) to acceptors R within a large variety of biomolecules. Through the use of the cofactor analogue 2 a whole nucleoside was coupled to DNA in a Mtase-catalyzed reaction.  相似文献   

20.
Aberrant DNA methylation originated from changes in DNA methyltransferase activity can lead to many genetic diseases and tumor types, and the monitoring of methyltransferase activity is thus of great importance in disease diagnosis and drug screening. In this work, by combing hybridization chain reaction (HCR) and metal ion-dependent DNAzyme recycling, we have developed a convenient enzyme-free signal amplification strategy for highly sensitive detection of DNA adenine methyltransferase (Dam MTase) activity and its inhibitors. The Dam MTase-induced methylation and subsequent cleavage of the methylated hairpin DNA probes by DpnI endonuclease lead to the release of ssDNA triggers for HCR formation of many Mg2+-dependent DNAzymes, in which the fluorescently quenched substrate sequences are catalytically and cyclically cleaved by Mg2+ to generate remarkably amplified fluorescent signals for highly sensitive detection of Dam MTase at 7.23 × 10−4 U/mL. In addition, the inhibition of different drugs to Dam MTase activity can also be evaluated with the developed method. With the advantages of simplicity and significant signal amplification over other common methods, the demonstrated biosensing approach thus offers great potential for highly sensitive detection of various methyltransferases and provides a convenient platform for drug screening for therapeutic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号