首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A contact-active antimicrobial coating is described that is only degraded in the presence of cellulase, which is an extracellular enzyme of numerous microbial strains. Antimicrobial DDA was grafted to a cellulose backbone via a polymeric spacer. The antimicrobial activity of the coatings, their biodegradability and their self-polishing potential were investigated. It was found that all coatings were antimicrobially active against Staphylococcus aureus. Coatings with high DS and long polymeric spacers degraded in water, while coatings with low DS and short spacers were not hydrolyzed even in the presence of cellulase. One coating was found to be selectively degradable by cellulase and recovered most of its antimicrobial activity after overloading and subsequent treatment with cellulase.  相似文献   

2.
Photocontrolled surface‐initiated reversible complexation mediated polymerization (photo‐SI‐RCMP) was successfully applied to fabricate concentrated polymer brushes with complex patterning structures. Positive‐type patterned polymer brushes were obtained by photo‐SI‐RCMP under visible light (550(±50) nm) using photomasks. A particularly interesting finding was that negative‐type patterned polymer brushes were also obtainable in a facile manner. A nonspecial UV light (250–385 nm) enabled the preparation of pre‐patterned initiator surfaces in a remarkably short time (1 min), leading to negative‐type patterned polymer brushes. Based on this unique selectivity between visible and UV light, the combination of two patterning techniques enabled the preparation of complex patterned brushes, including diblock copolymers, binary polymers, and functional binary polymers, without multistep immobilization of one or more initiators on the surfaces.  相似文献   

3.
4.
5.
Block copolymers in seconds : Catalyst‐free, ambient‐temperature click conjugation of individual polymer strands becomes possible using novel ATRP‐derived cyclopentadienyl‐capped polymers in an extremely rapid hetero‐Diels–Alder cycloaddition with macromolecules equipped with electron‐deficient dithioester end groups prepared by the RAFT process.

  相似文献   


6.
Synthetic polymer approaches generally lack the ability to control the primary sequence, with sequence control referred to as the holy grail. Two click chemistry reactions were now combined to form nucleobase‐containing sequence‐controlled polymers in simple polymerization reactions. Two distinct approaches are used to form these click nucleic acid (CNA) polymers. These approaches employ thiol–ene and thiol‐Michael reactions to form homopolymers of a single nucleobase (e.g., poly(A)n) or homopolymers of specific repeating nucleobase sequences (e.g., poly(ATC)n). Furthermore, the incorporation of monofunctional thiol‐terminated polymers into the polymerization system enables the preparation of multiblock copolymers in a single reaction vessel; the length of the diblock copolymer can be tuned by the stoichiometric ratio and/or the monomer functionality. These polymers are also used for organogel formation where complementary CNA‐based polymers form reversible crosslinks.  相似文献   

7.
Ti complexes incorporating fluorine-containing phenoxy-imine chelate ligands (fluorinated Ti-FI catalysts) have been demonstrated to induce an unprecedented living polymerization effect with both ethylene and propylene, through an attractive interaction between the fluorine atom in the ligand and a beta-hydrogen atom on the growing polymer chain. With the aid of this attractive interaction, highly controlled living ethylene polymerization, highly-syndiospecific living propylene polymerization, the synthesis of unique block copolymers from ethylene and propylene, and the catalytic production of monodisperse polyethylene and Zn-terminated polyethylene have been realized. The attractive interaction provides a conceptually new strategy for the achievement of controlled living olefin polymerization.  相似文献   

8.
Composite nano‐TiO2 with doping Fe3+ and Ag was prepared, and further modified by 3‐methacryloxypropyltrimethoxysilane. They were characterized by Zetasizer Nano ZS Particle and Zeta Potential Analyzer, X‐ray diffraction, UV–Vis spectrophotometer, FT–IR spectra, and transmission electron microscopy. The modified composite nano‐TiO2 was applied to prepare multifunctional fluorocarbon coatings (FCC). Antibacterial activity of multifunctional FCC containing modified composite nano‐TiO2 was investigated. Its photocatalytic antibacterial activity reached 92%. The influence of doping ingredients, amount of composite nano‐TiO2, different light houses, or surface modification was discussed. The surface of FCC cannot be easily smirched by oiliness, dust or water because of hydrophobic fluorosilicone emulsion. It would be an available modern interior building coating for its remarkable photocatalytic antibacterial property as well as self‐cleaning function. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Summary: The free‐radical addition of ω‐functional mercaptans to the vinyl double bonds of 1,2‐polybutadiene‐block‐poly(ethylene oxide) copolymers was used for modular synthesis of well‐defined functional block copolymers. The modification reaction proceeds smoothly and yields quantitatively functionalized block copolymers (1H NMR and FT‐IR spectroscopy) without disturbing the molecular‐weight distribution of the parent copolymer (PDI < 1.09, size exclusion chromatography).

The modular synthetic pathway towards the functional block copolymers reported here.  相似文献   


10.
11.
Optically active poly(ethylene glycol) monomethyl ether‐b‐poly(methacryloyl‐L ‐leucine methyl ester) (denoted as MPEG‐b‐PMALM) copolymers were prepared via atom transfer radical polymerization (ATRP), using bromine (Br) end‐capped poly(ethylene glycol) monomethyl ether (denoted as MPEG‐Br) as macroinitiator in the presence of CuBr/tris(2‐dimethylaminoethy1)amine (Me6TREN) as catalytic system. Broad range of morphologies, such as spherical, cylindrical, and vesicular micelles, which were prepared by initially dissolving prepared polymer in organic solvent at different concentration followed by addition various amount of water before dialysis against water to remove any added solvent, was observed by transmission electron microscope (TEM). More detailed chiroptical properties of the micelles/aggregates in aqueous solution were evaluated by circular dichroism (CD) spectroscopy as a function of micelles morphologies, polymer concentration, solvents employed, temperature, etc. The micellar solutions exhibit almost the same CD spectra regardless of its morphologies. The intensity of the CD spectra of the cylindrical micelles decreased in the molar ellipticities as the micellar concentration in water was increased. The Cotton effect was markedly changed when the solvent hydrophobicity was changed by addition of trifluoromethyl ethanol (TFME) to water. The intensity of the CD spectra decreased not too much within the temperature range from 20 °C to 90 °C, indicating good stability of the micelles upon temperature variation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1345–1355, 2009  相似文献   

12.
13.
14.
采用原子转移自由基聚合(ATRP)法制得了端基分别为烯丙基和溴原子的聚二甲基丙烯酰胺(PDMAAm),经叠氮基亲核取代后与端炔基聚二甲基硅氧烷进行点击反应,得到两亲三嵌段聚合物。利用^1HNMR、FTIR、GPC等测试方法对聚合物的结构进行了表征。结果表明:采用ATRP法合成的PDMAAm均聚物分子量分布较窄,通过点击化学法将热力学不相容的亲水性PDMAAm链段及疏水性聚二甲基硅氧烷(PDMS)链段制备PDMAAmPDMS—PDMAAm嵌段聚合物,是一种高效易行的方法。  相似文献   

15.
The synthesis of well‐defined poly(methyl methacrylate)‐block‐poly(ethylene oxide) (PMMA‐b‐PEO) dibock copolymer through anionic polymerization using monohydroxy telechelic PMMA as macroinitiator is described. Living anionic polymerization of methyl methacrylate was performed using initiators derived from the adduct of diphenylethylene and a suitable alkyllithium, either of which contains a hydroxyl group protected with tert‐butyldimethylsilyl moiety in tetrahydrofuran (THF) at ?78 °C in the presence of LiClO4. The synthesized telechelic PMMAs had good control of molecular weight with narrow molecular weight distribution (MWD). The 1H NMR and MALDI‐TOF MS analysis confirmed quantitative functionalization of chain‐ends. Block copolymerization of ethylene oxide was carried out using the terminal hydroxyl group of PMMA as initiator in the presence of potassium counter ion in THF at 35 °C. The PMMA‐b‐PEO diblock copolymers had moderate control of molecular weight with narrow MWD. The 1H NMR results confirm the absence of trans‐esterification reaction of propagating PEO anions onto the ester pendants of PMMA. The micellation behavior of PMMA‐b‐PEO diblock copolymer was examined in water using 1H NMR and dynamic light scattering. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2132–2144, 2008  相似文献   

16.
A cationic iron(III) complex was active for the polymerization of various epoxides, whereas the analogous neutral iron(II) complex was inactive. Cyclohexene oxide polymerization could be “switched off” upon in situ reduction of the iron(III) catalyst and “switched on” upon in situ oxidation, which is orthogonal to what was observed previously for lactide polymerization. Conducting copolymerization reactions in the presence of both monomers resulted in block copolymers whose identity can be controlled by the oxidation state of the catalyst: selective lactide polymerization was observed in the iron(II) oxidation state and selective epoxide polymerization was observed in the iron(III) oxidation state. Evidence for the formation of block copolymers was obtained from solubility differences, GPC, and DOSY‐NMR studies.  相似文献   

17.
We report a series of biocompatible and biodegradable block copolymers of poly(ε‐caprolactone) with “clickable” polyphosphoester (PPE). The block copolymers are synthesized through controlled ring‐opening polymerization of five‐membered cyclic phosphoester monomer, propargyl ethylene phosphate (PAEP), initiated with poly(ε‐caprolactone) macroinitiator. The polymerization followed first‐order kinetics with living polymerization characteristics, thus the molecular weight and composition of copolymers are tunable by adjusting the feed ratio of PAEP monomer to macroinitiator. Azide‐functionalized poly(ethylene glycol) has been grafted to the copolymer to demonstrate the reactive feasibility by Cu(I)‐catalyzed “click” chemistry of azides and alkynes, generating “brush‐coil” polymers. The mild conditions associated with the click reaction are shown to be compatible with poly(ε‐caprolactone) and PPE backbones, rendering the click reaction a generally useful method for grafting numerous types of functionality onto the block copolymers. The block copolymers also show good biocompatibility to cells, suggesting their suitability for a range of biomaterial applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
Post-polymerization modification provides an elegant way to introduce chemical functionalities onto macromolecules to produce tailor-made materials with superior properties. This concept was adapted to well-defined block copolymers of the poly(2-oxazoline) family and demonstrated the large potential of these macromolecules as universal toolkit for numerous applications. Triblock copolymers with separated water-soluble, alkyne- and alkene-containing segments were synthesized and orthogonally modified with various low-molecular weight functional molecules by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) and thiol-ene (TE) click reactions, respectively. Representative toolkit polymers were used for the synthesis of gold, iron oxide and silica nanoparticles.  相似文献   

19.
20.
Integrating self‐healing capability into supramolecular architectures is an interesting strategy, and can considerably enhance the performance and broaden the scope of applications for this important class of polymers. Herein we report the rational design of novel V‐shaped barbiturate (Ba) functionalized soft–hard–soft triblock copolymers with a reversible supramolecular healing motif (Ba) in the central part of the hard block, which undergoes autonomic repair at 30 °C. The designed synthesis also offers a suitable macromolecular building block to further self‐assemble with heterocomplementary α,ω‐Hamilton wedge (HW) functionalized polyisoprene (PI; HW‐PI‐HW), resulting in an H‐shaped supramolecular architecture with efficient self‐healing capabilities that can recover up to around 95 % of the original mechanical performance at 30 °C within 24 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号