首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We calculate the third-order susceptibility in He for photon energies from 19.5 eV to 24.5 eV in a configuration-interaction calculation, and discuss the role of autoionizing states as a means of enhancing harmonic generation.  相似文献   

2.
Bisphenol A diglycidyl methacrylate (Bis-GMA) was adsorbed onto or covalently bound to a porous silicon oxide surface. Laser desorption 10.5 eV postionization mass spectrometry (LDPI-MS) was previously demonstrated for surface analysis of adsorbed and surface bound Bis-GMA, but signal to noise levels were low and ion fragmentation was extensive. 7.87 eV postionization using the fluorine laser was demonstrated here for Bis-GMA. However, signal levels remained low for LDPI-MS of Bis-GMA as its ionization potential (IP) was only approximately 7.8 eV, near threshold for single photon ionization by the 7.87 eV fluorine laser. It is known that aromatic tagging of molecular analytes can lower the overall IP of the tagged molecular complex, allowing 7.87 eV single photon ionization. Therefore, Bis-GMA was also derivatized with several tags whose IPs were either below or above 7.87 eV: the tag with an IP below 7.87 eV enhanced single photon ionization while the tags with higher IPs did not. However, signal intensities were enhanced by resonant laser desorption for two of the derivatized Bis-GMAs. Intact ions of Bis-GMA and its derivatives were generally observed by 7.87 eV LDPI-MS, consistent with the formation of ions with relatively little internal energy upon threshold single photon ionization.  相似文献   

3.
Post-source decay (PSD) is a valuable tool for providing structural information from large molecules by time-of-flight mass spectrometry (TOFMS). We used PSD to obtain this type of data from small molecules in the laser desorption/ionization (LDI) study of diesel engine exhaust particles. As the original nitrogen laser (lambda = 337 nm, E = 3.5 eV/photon) of our TOF mass spectrometer does not yield sufficient energy to ionize polycyclic aromatic hydrocarbons (PAHs), a second laser with a shorter wavelength has been coupled to the instrument. The fourth harmonic of a Nd:YAG laser (lambda = 266 nm, 4.6 eV/photon) has been chosen to achieve two-photon single-step desorption/ionization of PAHs. The PSD fragmentation of functionalized, alkylated and sulfur PAHs is discussed. Diesel engine exhaust particles are also studied as an example of a real complex sample. This technique is presented herein as a way to identify small molecules in environmental samples. Information provided by LDI-PSD-TOFMS can be a way to distinguish pollutants with very close molecular weights even if the resolving power of a TOF mass spectrometer is not sufficient.  相似文献   

4.
High energy photon is needed for photoelectron spectroscopy (PES) of anions with high electron binding energies, such as superhalogens and O-rich metal oxide clusters. The highest energy photon used for anion PES in the laboratory has been 157 nm (7.866 eV) from F2 eximer lasers. Here, we report an anion PES experiment using coherent vacuum ultraviolet radiation at 118.2 nm (10.488 eV) by tripling the third harmonic output (355 nm) of a Nd:YAG laser in a XeAr cell. Our study focuses on a set of superhalogen species, MCl(4) (-) (M=Sc, Y, La), which were expected to possess very high electron binding energies. While the 157 nm photon can only access the ground state detachment features for these species, more transitions to the excited states at binding energies higher than 8 eV are observed at 118.2 nm. The adiabatic detachment energies are shown to be, 6.84, 7.02, and 7.03 eV for ScCl(4) (-), YCl(4) (-), and LaCl(4) (-) eV, respectively, whereas their corresponding vertical detachment energies are measured to be 7.14, 7.31, and 7.38 eV.  相似文献   

5.
We demonstrate that we can use the extreme ultraviolet radiation produced by high order harmonic generation to perform photoionization experiments. With harmonics from the 11th to the 69th of a 140 fs Cr:LiSAF laser operating at 825 nm, we measure the relative photoionization cross sections of xenon, krypton, argon and neon over the range 10 to 110 eV. With narrow bandwidth harmonics produced by a tunable, 1 ps dye laser, we observe the autoionizing states between the 4p 5 ionization thresholds in krypton.  相似文献   

6.
We report the optical second harmonic (SH) response from gold core-silver shell nanoparticles supported at a liquid-liquid interface in the spectral region where the second harmonic generation (SHG) frequency is resonant with the surface plasmon (SP) resonance excitation of the nanoparticles. We compare these results with that obtained by classical linear optical absorption spectroscopy and show that the nonlinear optical response is dominated by the SP resonance enhancement with negligible contributions from the interband transitions. As a result, the SH spectrum exhibits two clear SP resonance bands attributed to the two SP resonances of the composite nanostructure formed by the gold core-silver shell nanoparticles. Absolute values of the hyperpolarizabilities are measured by hyper Rayleigh scattering (HRS) and compared that of pure gold nanoparticles. The hyperpolarizability measured at a harmonic energy of 3.0 eV, enhanced through excitation of the high energy SP resonance of the nanoparticle, increases with the silver content whereas the hyperpolarizability measured at a harmonic energy of 2.4 eV, enhanced through the excitation of the low energy SP resonance of the nanoparticle, decreases because of the shift of this resonance away from the harmonic frequency. The hyperpolarizability determined by HRS and the square root of the SHG intensities, scaling with the nanoparticle hyperpolarizability, have similar trends with respect to the silver content indicative of closely related adsorption properties yielding similar surface concentrations at the liquid-liquid interface.  相似文献   

7.
The photoionization and photoelectron spectroscopy of pure He droplets were investigated at photon energies between 24.6 eV (the ionization energy of He) and 28.0 eV. Time-of-flight mass spectra and photoelectron images were obtained at a series of molecular beam source temperatures and pressures to assess the effect of droplet size on the photoionization dynamics. At source temperatures below 16 K, where there is significant production of clusters with more than 10(4) atoms, the photoelectron images are dominated by fast electrons produced via direct ionization, with a small contribution from very slow electrons with kinetic energies below 1 meV arising from an indirect mechanism. The fast photoelectrons from the droplets have as much as 0.5 eV more kinetic energy than those from atomic He at the same photon energy. This result is interpreted and simulated within the context of a "dimer model", in which one assumes vertical ionization from two nearest-neighbor He atoms to the attractive region of the He2+ potential energy curve. Possible mechanisms for the slow electrons, which were also seen at energies below IE(He), are discussed, including vibrational autoionizaton of Rydberg states comprising an electron weakly bound to the surface of a large HeN+ core.  相似文献   

8.
Above-threshold multiphoton ionization (photon energy 1.17 eV and 2.33 eV) of xenon was studied with circularly and linearly polarized light. Pronounced differences in shape have been observed for photoelectron spectra taken with linearly and circularly polarized light. With circularly polarized light a strong suppression of low-energy electrons was observed; the total electron yield was reduced by factors of approximately 4 (photon energy 2.33 eV) and, depending on the laser intensity, between 13 and 80 (photon energy 1.17 eV).  相似文献   

9.
We consider the model with kinetic excitation into the quasicontinuum (KEQ) for resonant polyatomic molecules which absorb laser radiation and are surrounded by buffer molecules. KEQ takes place when the resonant molecules in the lower part of the energy spectrum interact weakly with the laser radiation, but the molecules in the quasicontinuum are rapidly excited to still higher energy and dissociate. Under these conditions the collisions of the resonant and buffer molecules lead to excitation of resonant molecules into the quasicontinuum because the population of the quasicontinuum is much less than its thermodynamical equilibrium value. It is found, that the smaller the V-T relaxation time τVT, the larger the rate of KEQ and the dissociation rate (if only τVT is not too small). Thus, if we change the experimental conditions and decrease τVT (for instance, by passing from the heavy buffer gas Xe to the light buffer gas He), for some resonant molecules we may observe that the probability of dissociation increases.  相似文献   

10.
Femtosecond high-order harmonic transient absorption spectroscopy is used to observe electromagnetically induced transparency-like behavior as well as induced absorption in the extreme ultraviolet by laser dressing of the He 2s2p (1Po) and 2p2 (1Se) double excitation states with an intense 800 nm field. Probing in the vicinity of the 1s2 → 2s2p transition at 60.15 eV reveals the formation of an Autler–Townes doublet due to coherent coupling of the double excitation states. Qualitative agreement with the experimental spectra is obtained only when optical field ionization of both double excitation states into the N = 2 continuum is included in the theoretical model. Because the Fano q-parameter of the unperturbed probe transition is finite, the laser-dressed He atom exhibits both enhanced transparency and absorption at negative and positive probe energy detunings, respectively.  相似文献   

11.
Using two different TDDFT methods, we study the role of electronically excited states and two-electron dynamics in high harmonic generation (HHG) of H2. The two methods produce slightly different electronic structures as reflected in the calculated ionization potentials. They nevertheless give similar HHG spectra. The difference between the two methods increases with the laser intensity, while their predictions remain qualitatively consistent.Our results suggest that two-electron dynamics can extend the HHG cutoff. Specifics of such extension depends on the internuclear distance and the laser intensity. We propose an ion excitation plus tunneling ionization mechanism to explain these extensions.The involvement of excited states is further revealed when we analyze each harmonic as a function of the internuclear distance. We see resonant peaks that are due to multiphoton excitation. These peaks exist above the ionization threshold as well.  相似文献   

12.
A realistic dynamics simulation study is reported for the ultrafast radiationless deactivation of 9H-adenine. The simulation follows two different excitations induced by two 80 fs (fwhm) laser pulses that are different in energy: one has a photon energy of 5.0 eV, and the other has a photon energy of 4.8 eV. The simulation shows that the excited molecule decays to the electronic ground state from the (1)pipi* state in both excitations but through two different radiationless pathways: in the 5.0 eV excitation, the decay channel involves the out-of-plane vibration of the amino group, whereas in the 4.8 eV excitation, the decay strongly associates with the deformation of the pyrimidine at the C 2 atom. The lifetime of the (1) npi* state determined in the simulation study is 630 fs for the 5.0 eV excitation and 1120 fs for the 4.8 eV excitation. These are consistent with the experimental values of 750 and 1000 fs. We conclude that the experimentally observed difference in the lifetime of the (1) npi* state at various excitations results from the different radiationless deactivation pathways of the excited molecule to the electronic ground state.  相似文献   

13.
Above-threshold multiphoton ionization of xenon, krypton, and argon was studied with circularly and linearly polarized light (photon energy 1.17 eV and 2.33 eV). With linearly polarized light photoelectrons are preferentially ejected along the direction of the polarization vector. With circularly polarized light a strong suppression of ejected photoelectrons was observed; the measured yield of photoelectrons was reduced by factors of up to 80 depending on the laser intensity and the photon energy. The experimental results are compared with theoretical calculations based on a multiphoton-detachment model.  相似文献   

14.
Neutral clusters of iron oxide are created by laser ablation of iron metal and subsequent reaction of the gas phase metal atoms, ions, clusters, etc., with an O2/He mixture. The FemOn clusters are cooled in a supersonic expansion and detected and identified in a time-of-flight mass spectrometer following laser ionization at 118 nm (10.5 eV), 193 nm (6.4 eV), or 355 nm (3.53 eV) photons. With 118 nm radiation, the neutral clusters do not fragment because single photon absorption is sufficient to ionize all the clusters and the energy/pulse is approximately 1 microJ. Comparison of the mass spectra obtained at 118 nm ionization (single photon) with those obtained at 193 nm and 355 nm ionization (through multiphoton processes), with regard to intensities and linewidths, leads to an understanding of the multiphoton neutral cluster fragmentation pathways. The multiphoton fragmentation mechanism for neutral iron oxide clusters during the ionization process that seems most consistent with all the data is the loss of one or two oxygen atoms. In all instances of ionization by laser photons, the most intense features are of the forms FemOm+, FemO(m+1)+, and FemO(m+2)+, and this strongly suggests that, for a given m, the most prevalent neutral clusters are of the forms FemOm, FemO(m+1), and FemO(m+2). As the value of m increases, the more oxygen rich neutral clusters appear to increase in stability.  相似文献   

15.
《Chemical physics letters》1986,125(2):97-100
Relative partial photoionization cross sections as a function of photon energy, over the range 20–110 eV, have been measured for the valence bands of Cr(CO)6, Mo(CO)6 and W(CO)6. All three t2g−1 bands show a very pronounced increase in intensity at photon energies (hv) corresponding to np resonant absorption (Cr(CO)6, hv = 52.5 eV, n = 3; Mo(CO)6,hv = 48 eV, n = 4; W(CO)6, hv = 44 and 53 eV, n = 5). The other valence bands show a small intensity increase at similar energies. Observation of such resonant photoemission provides an unambiguous method for assignment of nd bands in the photoelectron spectra of gas-phase molecules.  相似文献   

16.
An experimental two-color photoionization dynamics study of laser-excited Br2 molecules is presented, combining pulsed visible laser excitation and tunable vacuum ultraviolet (VUV) synchrotron radiation with photoelectron imaging. The X 1Sigmag + -B 3Pi0+u transition in Br2 is excited at 527 nm corresponding predominantly to excitation of the v' = 28 vibrational level in the B 3Pi0+u state. Tunable VUV undulator radiation in the energy range of 8.40-10.15 eV is subsequently used to ionize the excited molecules to the X 2Pi32,12 state of the ion, and the ionic ground state is probed by photoelectron imaging. Similar experiments are performed using single-photon synchrotron ionization in the photon energy range of 10.75-12.50 eV without any laser excitation. Photoelectron kinetic energy distributions are extracted from the photoelectron images. In the case of two-color photoionization using resonant excitation of the intermediate B 3Pi0+u state, a broad distribution of photoelectron kinetic energies is observed, and in some cases even a bimodal distribution, which depends on the VUV photon energy. In contrast, for single-photon ionization, a single nearly Gaussian-shaped distribution is observed, which shifts to higher energy with photon energy. Simulated spectra based on Franck-Condon factors for the transitions Br2(X 1Sigmag+, v" = 0)-Br2 +(X 2Pi12,32, v+) and Br2(B 3Pi0+u, v' = 28)-Br2 +(X 2Pi12,32, v+) are generated. Comparison of these calculated spectra with the measured images suggests that the differences in the kinetic energy distributions for the two ionization processes reflect the different extensions of the vibrational wave functions in the v" = 0 electronic ground state (X 1Sigmag+) versus the electronically and vibrationally excited state (B 3Pi0+u, v' = 28).  相似文献   

17.
We report new results of the Stokes parametersP 1 toP 4 and of the coherence parametersP lin, γ a , ρ00 andL for He(31 D) excitation by electron impact in the energy range 40 eV to 81.6 eV obtained by the scattered electron-polarized photon coincidence technique. The present results are, where available, in fair agreement with previous measurements of other groups but disagree with the available calculations based on different models.  相似文献   

18.
We report data on the excitation of the 23 S metastable state in helium by electrons in the presence of an intense laser field. The metastable signal is detected when the electron energy is insufficient to excite this state by itself. The additional energy comes from a pulsed CO2 laser developing peak intensities in the interaction region in the 108 W× cm?2 range and requires the absorption of one or more photons. This process involves the active participation of all three bodies: the electron, the photon and the target atom. These data represent the first observation of this process when more than one photon is required.  相似文献   

19.
High-order harmonic emission and attosecond extreme-ultraviolet pulse generation have been theoretically investigated by controlling the two-color polarized laser field. The results show that when the polarized angle between the two pulses is arranged at \(\uptheta =0.2\uppi \) , not only the harmonic cutoff is extended, but also the modulation on the harmonic spectrum is decreased. Further, by optimizing the laser parameters, a supercontinuum with the 270 eV bandwidth can be obtained, which results in a series of isolated 38 as pulses. Finally, by investigating the pulse duration effect on the harmonic emission, we find that this two-color polarized gating scheme can also be achieved by the multi-cycle pulse region, which is much better for experimental realization.  相似文献   

20.
The influence of a strong laser field on the dynamics of fast (e, 2e) collisions in helium is analyzed in the asymmetric, coplanar geometry. The interaction of the laser field with the incident, scattered and ejected electrons is treated in a non-perturbative way, while the remaining interactions are treated by using first order perturbation theory. Detailed calculations are performed for an incident electron energyE k i=600 eV, an ejected electron energyE k B=5 eV and a scattering angle θ A =4°. The influence of the laser parameters (photon energy, intensity and direction of polarization) on the angular distribution of the ejected electron is analyzed. We find that in general the triple differential cross sections are strongly dependent on the dressing of the projectile and the target by the laser field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号