首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The electronic structures of undoped and doped copper oxides and other related oxides are investigated on the basis of the N-band Hubbard models. The Hubbard Hamiltonians for clusters of transition metal oxides are exactly diagonalized by the full valence-bond (VB ) configuration interaction (CI) method in order to elucidate populations of doped holes, electronic excitation energies, etc. Possible mechanisms of the high-Tc superconductivity for oxide superconductors are discussed on the basis of the calculated results, together with available experiments. The analysis of correlation and spin correlation effects on doped copper oxides indicates theoretical possibilities of new models for organic and organometallic magnetic conductors and superconductors. Organic and organometallic analogs to copper oxides are therefore proposed on the basis of these results.  相似文献   

2.
3.
孙辉  滕启文  吴师 《化学进展》2006,18(11):1446-1451
碳笼氧化物对碳笼的官能团化研究具有重要意义,因而激起了人们广泛的研究兴趣。本文对碳笼氧化物C60On、C70On、C76On、C78On及C80On的结构、电子光谱、红外光谱及核磁共振谱的研究进展进行综合评述。介绍了国内外近十几年来众多研究小组的工作,并结合作者本人在此方面的理论研究成果,进一步探索碳笼氧化物的结构特点以及光谱性质的规律性。在对C60及C70氧化物研究结果与实验符合的基础上,预测高碳笼氧化物的结构和光谱。  相似文献   

4.
The effect the nature of metal oxide components, quantitative and qualitative composition, structure of binary metal oxide nanocomposites, and temperature have on the physicochemical processes that occur during the detection of reducing gases and are responsible for the efficiency and selectivity of sensors based on these composites is considered. The relationship between the mechanisms of the conductivity and sensor effect in composites is determined. The crucial role of electron transfer between metal oxide components with different work functions leading to the mutual charging of these components is noted. The mechanisms of electronic and chemical sensitization of the sensor effect in composite materials consisting of metal oxides with various electronic and chemical properties are discussed. The important role of the way composite materials are obtained is noted. The effect of small clusters of one oxide on the surfaces of nanoparticles of other components, formed during the synthesis of composites via impregnation, is studied. Systems consisting of composite nanofibers of the core–shell type based on metal oxides of different natures are considered. It is shown that by changing the nature of the components and their relative location in the nanofibers, the sensitivity and selectivity of a sensor system can be adjusted for different chemical compounds.  相似文献   

5.
As synthetic nanocatalysis strives to create and apply well-defined catalytic centers containing as few as a handful of active metal atoms, it becomes particularly important to understand the structures, compositions, and reactivity of small metal clusters as a function of size and chemical environment. As a part of our effort to better understand the oxidation chemistry of Pt clusters, we present here a comprehensive set of density functional theory simulations combined with thermodynamic modeling that allow us to map out the T-p(O)2 phase diagrams and predict the oxygen affinity of Pt(x)O(y) clusters, x = 1-3. We find that the Pt clusters have a much stronger tendency to form oxides than does the bulk metal, that these oxides persist over a wide range of oxygen chemical potentials, and that the most stable cluster stoichiometry varies with size and may differ from the stoichiometry of the stable bulk oxide in the same environment. Further, the facility with which the clusters are reduced depends both on size and on composition. These models provide a systematic framework for understanding the compositions and energies of redox reactions of discrete metal clusters of interest in supported and gas-phase nanocatalysis.  相似文献   

6.
Redox and acid-base properties of dispersed oxide nanostructures change markedly as their local structure and electronic properties vary with domain size. These changes give rise to catalytic behavior, site structures, and reaction chemistries often unavailable on bulk crystalline oxides. Turnover rates for redox and acid catalysis vary as oxide domains evolve from isolated monomers to two-dimensional oligomers, and ultimately into clusters with bulk-like properties. These reactivity changes reflect the ability of oxide domains to accept or redistribute electron density in kinetically-relevant reduction steps, in the formation of temporary acid sites via reductive processes, and in the stabilization of cationic transition states. Reduction steps are favored by low-lying empty orbitals prevalent in larger clusters, which also favor electron delocalization, stable anions, and strong Br?nsted acidity. Isomerization of xylenes and alkanes, elimination reactions of alkanols, and oxidation of alkanes to alkenes on V, Mo, Nb, and W oxide domains are used here to demonstrate the remarkable catalytic diversity made available by changes in domain size. The reactive and disordered nature of small catalytic domains introduces significant challenges in their synthesis and their structural and mechanistic characterization, which require in situ probes and detailed kinetic analysis. The local structure and electronic properties of these materials must be probed during catalysis and their catalytic function be related to specific kinetically-relevant steps. Structural uniformity can be imposed on oxide clusters by the use of polyoxometalate clusters with thermodynamically stable and well-defined size and connectivity. These clusters provide the compositional diversity and the structural fidelity required to develop composition-function relations from synergistic use of experiments and theory. In these clusters, the valence and electronegativity of the central atom affects the acid strength of the polyoxometalate clusters and the rate constants for acid catalyzed elementary steps via the specific stabilization of cationic transition states in isomerization and elimination reactions.  相似文献   

7.
A simplified LCAO-DFT-LDA scheme for calculations of structure and electronic structure of large molecules, clusters, and solids is presented. Forces on the atoms are calculated in a semiempirical way considering the electronic states. The small computational effort of this treatment allows one to perform molecular dynamics (MD ) simulations of molecules and clusters up to a few hundred atoms as well as corresponding simulations of condensed systems within the Born-Oppenheimer approximation. The accuracy of the method is illustrated by the results of calculations for a series of small molecules and clusters. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
Cationic and anionic cobalt oxide clusters, generated by laser vaporization, were studied using guided-ion-beam mass spectrometry to obtain insight into their structure and reactivity with carbon monoxide. Anionic clusters having the stoichiometries Co2O3(-), Co2O5(-), Co3O5(-) and Co3O6(-) were found to exhibit dominant products corresponding to the transfer of a single oxygen atom to CO, indicating the formation of CO 2. Cationic clusters, in contrast, displayed products resulting from the adsorption of CO onto the cluster accompanied by the loss of either molecular O 2 or cobalt oxide units. In addition, collision induced dissociation experiments were conducted with N 2 and inert xenon gas for the anionic clusters, and xenon gas for the cationic clusters. It was found that cationic clusters fragment preferentially through the loss of molecular O 2 whereas anionic clusters tend to lose both atomic oxygen and cobalt oxide units. To further analyze how stoichiometry and ionic charge state influence the structure of cobalt oxide clusters and their reactivity with CO, first principles theoretical electronic structure studies within the density functional theory framework were performed. The calculations show that the enhanced reactivity of specific anionic cobalt oxides with CO is due to their relatively low atomic oxygen dissociation energy which makes the oxidation of CO energetically favorable. For cationic cobalt oxide clusters, in contrast, the oxygen dissociation energies are calculated to be even lower than for the anionic species. However, in the cationic clusters, oxygen is calculated to bind preferentially in a less activated molecular O 2 form. Furthermore, the CO adsorption energy is calculated to be larger for cationic clusters than for anionic species. Therefore, the experimentally observed displacement of weakly bound O 2 units through the exothermic adsorption of CO onto positively charged cobalt oxides is energetically favorable. Our joint experimental and theoretical findings indicate that positively charged sites in bulk-phase cobalt oxides may serve to bind CO to the catalyst surface and specific negatively charged sites provide the activated oxygen which leads to the formation of CO 2. These results provide molecular level insight into how size, stoichiometry, and ionic charge state influence the oxidation of CO in the presence of cobalt oxides, an important reaction for environmental pollution abatement.  相似文献   

9.
Vanadium oxide clusters, (V2O5)n, have been predicted to possess interesting polyhedral cage structures, which may serve as ideal molecular models for oxide surfaces and catalysts. Here we examine the electronic properties of these oxide clusters via anion photoelectron spectroscopy for (V2O5)n(-) (n = 2-4), as well as for the 4d/5d species, Nb4O10(-) and Ta4O10(-). Well-resolved photoelectron spectra have been obtained at 193 and 157 nm and used to compare with density functional calculations. Very high electron affinities and large HOMO-LUMO gaps are observed for all the (V2O5)n clusters. The HOMO-LUMO gaps of (V2O5)n, all exceeding that of the band gap of the bulk oxide, are found to increase with cluster size from n = 2-4. For the M4O10 clusters, we find that the Nb/Ta species yield similar spectra, both possessing lower electron affinities and larger HOMO-LUMO gaps relative to V4O10. The structures of the anionic and neutral clusters are optimized; the calculated electron binding energies and excitation spectra for the global minimum cage structures are in good agreement with the experiment. Evidence is also observed for the predicted trend of electron delocalization versus localization in the (V2O5)n(-) clusters. Further insights are provided pertaining to the potential chemical reactivities of the oxide clusters and properties of the bulk oxides.  相似文献   

10.
We investigate the electronic shell structure of planar metal clusters, having in mind clusters on insulating surfaces with an interface energy such that the cluster covers the surface in a monolayer. In this first survey we concentrate on the shell effects of such a planar electron cloud using the Ultimate Jellium Model where the structural effects of the positive background are completely eliminated. An axially symmetric electron cloud shows shell effects which are, however, somewhat smaller than those of fully free threedimensional clusters. The free variation of the shape for planar clusters on surfaces, leading to many triaxial clusters, diminishes the shell effects even further, leading to the existence of hybrid-deformed clusters and a lack of energetically favored “magic” clusters in an intermediate size range N ≈ 10.30. In contrary to the situation for free clusters the small shell energies have a minor effect on the energetics of the groundstate. As a consequence, electronic shell effects are only one ingredient amongst others to determine the kinetics of cluster growth on (insulating) substrates. With a bold rescaling assumption, we can relate axially symmetric planar clusters to the planar electron cloud in a neutral quantum dot, having the consequence that shell effects persist to play a role in these systems.  相似文献   

11.
To contribute to an understanding of growth conditions and electronic properties of metal clusters on technologically relevant oxides we have examined the mobility of individual, alumina-supported Pt-adatoms and the optical properties of single supported Ag-clusters. Using field-ion microscopy (FIM) we have prepared and imaged an individual Pt-adatom at approximately 40 K, both on the apex plane of a [1 1 0]-oriented NiAl tip and on a thin alumina film, grown on the same NiAl specimen by oxidation. On the alumina film, the onset temperature for Pt surface diffusion approaches 100 K being distinctively lower than the value 165 K measured on NiAl(1 1 0). Employing the tip of a scanning tunneling microscope (STM) as a local electron source, photon emission from individual, alumina-supported Ag-clusters was spectroscopically analyzed. The occurrence of a distinct emission line is explained by the decay of a collective electron oscillation (Mie-plasmon resonance). For decreasing Ag-cluster diameter, the emission lines (i) shift to higher energies and (ii) their widths increase. To explain these observations, we discuss (i) the reduced screening of the plasmon oscillation due to the Ag 4d electrons and (ii) an enhanced electron surface scattering rate in small clusters.  相似文献   

12.
Transition metal oxide cations of the form M n O m (+) (M = Y, La) are produced by laser vaporization in a pulsed nozzle source and detected with time-of-flight mass spectrometry. Cluster oxides for each value of n form only a limited number of stoichiometries; MO(M2O3)x(+) species are particularly intense. Cluster cations are mass selected and photodissociated using the third harmonic (355 nm) of a Nd:YAG laser. Multiphoton excitation is required to dissociate these clusters because of their strong bonding. Yttrium and lanthanum oxides exhibit different dissociation channels, but some common trends can be identified. Larger clusters for both metals undergo fission to make certain stable cation clusters, especially MO(M2O3) x (+) species. Specific cations are identified to be especially stable because of their repeated production in the decomposition of larger clusters. These include M3O4(+), M5O7(+), M7O10(+), and M9O13(+), along with Y6O8(+). Density functional theory calculations were performed to investigate the relative stabilities and structures of these systems.  相似文献   

13.
In this review, thin films of SiO2 on Mo(1 1 2) and MgO(1 0 0) on Mo(1 0 0) have been characterized using metastable impact electron and ultraviolet photoelectron spectroscopies (metastable impact electron spectroscopy (MIES) and ultraviolet photoelectron spectroscopy). The electronic and chemical properties of the thin films are identical to those of the corresponding bulk oxides. For different prepared defective SiO2 surfaces, additional features are observed in the band-gap region. These features arise from vacancies or excess oxygen and are consistent with theoretical predictions of additional occupied states in the band-gap due to point defects. Extended defect sites on SiO2 and MgO are identified using MIES by a narrowing of the O(2p) features with a reduction in the density of extended defect sites. MIES of adsorbed Xe (MAX) is also used to estimate the density of extended defect sites. Furthermore, it is shown that CO is an appropriate probe molecule for estimating the defect density of MgO surfaces. Upon Ag exposure, the change in the work function of a low defect MgO(1 0 0) versus a high defect surface is markedly different. For a sputter-damaged MgO(1 0 0) surface, an initial decrease of the work function was found, implying that small Ag clusters on this surface are electron deficient. In contrast, for SiO2 no significant change of the work function upon Ag exposure with increasing defect density was observed. On MgO(1 0 0), the presence of defect sites markedly alter the electronic and chemical properties of supported Ag clusters. Such a strong influence of defect sites was not found for Ag clusters on SiO2.  相似文献   

14.
金钯二元小团簇的几何结构与电子性质   总被引:1,自引:0,他引:1  
在UBP86/LANL2DZ和UB3LYP/def2-TZVP水平下详细研究了AumPdn(m+n≤6)团簇的几何结构和电子性质.阐明了团簇的结构特征、平均结合能、垂直电离势、垂直电子亲和能、电荷转移以及成键特征.除单取代混合团簇(AunPd和AuPdn,n=5或6)外,五和六原子混合团簇中钯原子趋于聚集到一起形成Pdcore,金原子分布在Pdcore周围形成PdcoreAushell结构.含一个和两个钯原子团簇的电子性质与纯金团簇类似,呈现一定奇偶振荡.混合团簇的电子性质,如最高占据分子轨道(HOMO),最低未占据分子轨道(LUMO),垂直电离势,垂直电子亲和能,Fermi能级和化学硬度等均与团簇空间结构和金、钯原子数之比直接相关.混合团簇中存在钯原子到金原子间的电荷转移,表明团簇中存在明显金钯间成键作用.分析团簇的电荷分布、前线轨道和化学硬度表明,金钯混合团簇对小分子如O2、H2和CO等的反应活性要强于纯金团簇.  相似文献   

15.
The preferential structures of small copper clusters Cun (n=2-9) and the adsorption of methanol molecules on these clusters are examined with first principles, molecular dynamics simulations. The results show that the copper clusters undergo systematic changes in bond length and bond order associated with altering their preferential structures from one-dimensional structures, to two-dimensional and three-dimensional structures. The results also indicate that low coordination number sites on the copper clusters are both the most favorable for methanol adsorption and have the greatest localization of electronic charge. The simulations predict that charge transfer between the neutral copper clusters and the incident methanol molecules is a key process by which adsorption is stabilized. Importantly, the changes in the dimensionality of the copper clusters do not significantly influence methanol adsorption.  相似文献   

16.
The results of a detailed study of Li(+) neutralization in scattering on Ag and Au clusters and thin films supported on TiO(2) are presented. A very efficient neutralization is observed on small clusters with a decrease for the smallest clusters. These results closely follow the size-effects observed in the reactivity of these systems. The energy dependence of the neutralization was studied for the larger clusters (>4 nm) and observed to be similar in trend to the one observed on films and bulk (111) crystals. A general discussion of possible reasons of the enhancement in neutralization is presented and these changes are then tentatively discussed in terms of progressive modifications in the electronic structure of clusters as a function of reduction in size and as it evolves from metallic-like to discretised states. The highest neutralization efficiency would appear to correspond to clusters sizes for which a metal to nonmetal transition occurs. The relative position of the Li level and the highest occupied molecular orbital in the molecular cluster can be expected to strongly affect the electron transfer processes, which in this case should be described in a molecular framework.  相似文献   

17.
The geometric and electronic structures of Si(n), Si(n) (+), and AlSi(n-1) clusters (2< or =n< or =13) have been investigated using the ab initio molecular orbital theory under the density functional theory formalism. The hybrid exchange-correlation energy function (B3LYP) and a standard split-valence basis set with polarization functions [6-31G(d)] were employed for this purpose. Relative stabilities of these clusters have been analyzed based on their binding energies, second difference in energy (Delta (2)E) and fragmentation behavior. The equilibrium geometry of the neutral and charged Si(n) clusters show similar structural growth. However, significant differences have been observed in the electronic structure leading to their different stability pattern. While for neutral clusters, the Si(10) is magic, the extra stability of the Si(11) (+) cluster over the Si(10) (+) and Si(12) (+) bears evidence for the magic behavior of the Si(11) (+) cluster, which is in excellent agreement with the recent experimental observations. Similarly for AlSi(n-1) clusters, which is isoelectronic with Si(n) (+) clusters show extra stability of the AlSi(10) cluster suggesting the influence of the electronic structures for different stabilities between neutral and charged clusters. The ground state geometries of the AlSi(n-1) clusters show that the impurity Al atom prefers to substitute for the Si atom, that has the highest coordination number in the host Si(n) cluster. The fragmentation behavior of all these clusters show that while small clusters prefers to evaporate monomer, the larger ones dissociate into two stable clusters of smaller size.  相似文献   

18.
Time-resolved photoelectron imaging has been used to study the relaxation dynamics of small Hg(n) (-) clusters (n=7-13,15,18) following intraband electronic excitation at 1250 nm (1.0 eV). This study furthers our previous investigation of single electron, intraband relaxation dynamics in Hg(n) (-) clusters at 790 nm by exploring the dynamics of smaller clusters (n=7-10), as well as those of larger clusters (n=11-13,15,18) at a lower excitation energy. We measure relaxation time scales of 2-9 ps, two to three times faster than seen previously after 790 nm excitation of Hg(n) (-), n=11-18. These results, along with size-dependent trends in the absorption cross-section and photoelectron angular distribution anisotropy, suggest significant evolution of the cluster anion electronic structure in the size range studied here. Furthermore, the smallest clusters studied here exhibit 35-45 cm(-1) oscillations in pump-probe signal at earliest temporal delays that are interpreted as early coherent nuclear motion on the excited potential energy surfaces of these clusters. Evidence for evaporation of one or two Hg atoms is seen on a time scale of tens of picoseconds.  相似文献   

19.
To investigate the electronic structure and magnetic properties of manganese oxide clusters, we carried out first-principles electronic structure calculations for small MnO clusters. Among various structural and magnetic configurations of the clusters, the bulklike [111]-antiferromagnetic ordering is found to be favored energetically, while the surface atoms of the clusters exhibit interesting electronic and magnetic characteristics which are different from their bulk ones. The distinct features of the surface atoms are mainly attributed to the reduction of Mn coordination numbers and the bond-length contractions in the clusters, which may serve as a key factor for the understanding of physical and chemical properties of magnetic oxide nanoparticles.  相似文献   

20.
Pyrrolizidine alkaloid (PA)–containing plants are widely distributed in the world. PAs are hepatotoxic, affecting livestock and humans. PA N‐oxides are often present together with PAs in plants and also exhibit hepatotoxicity but with less potency. HPLC–MS is generally used to analyze PA‐containing herbs, although PA references are unavailable in most cases. However, to date, without reference standards, HPLC–MS methodology cannot distinguish PA N‐oxides from PAs because they both produce the same characteristic ions in mass spectra. In the present study, the mass spectra of 10 PA N‐oxides and the corresponding PAs were systemically investigated using HPLC–MS to define the characteristic mass fragment ions specific to PAs and PA N‐oxides. Mass spectra of toxic retronecine‐type PA N‐oxides exhibited two characteristic ion clusters at m/z 118–120 and 136–138. These ion clusters were produced by three unique fragmentation pathways of PA N‐oxides and were not found in their corresponding PAs. Similarly, the nontoxic platynecine‐type PA N‐oxides also fragmented via three similar pathways to form two characteristic ion clusters at m/z 120–122 and 138–140. Further application of using these characteristic ion clusters allowed successful and rapid identification of PAs and PA N‐oxides in two PA‐containing herbal plants. Our results demonstrated, for the first time, that these characteristic ion clusters are unique determinants to discriminate PA N‐oxides from PAs even without the availability of reference samples. Our findings provide a novel and specific method to differentiate PA N‐oxides from PAs in PA‐containing natural products, which is crucial for the assessment of their intoxication. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号