首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intense room-temperature photoluminescence (PL) from the UV to the green region was observed from Zr4+-doped silica synthesized by a sol-gel process using tetraethoxysilane as the precursor, followed by thermal treatment at 500 °C in air. The wide PL band can be resolved into three components centered at 3.70, 3.25, and 2.65 eV, respectively. The intensity of the 3.25 and 2.65 eV PL bands was greatly enhanced compared with pure sol-gel silica. The 3.70 eV emission was assigned to non-bridging oxygen hole centers, while the 2.65 eV one originated from neutral oxygen vacancies (VO). The 3.25 eV PL band was most likely associated with E′ centers, as supported by electron spin resonance measurement. It was proposed that the Zr4+-doping leads to oxygen deficiency in the silica, thus resulting in enhancement of the density of VO and E′ center defects.  相似文献   

2.
Optical properties of europium doped LiGdF4 (LGF) powders synthesized by the sol-gel process were investigated in the VUV range. Emission of two visible photons (due to 5D07FJ transitions on two Eu3+ ions) per absorbed VUV photon was demonstrated indicating that a quantum cutting phenomenon takes place. This mechanism is explained by a two-step energy transfer when exciting Gd3+ ions in their 6GJ high energy level. Best luminescence efficiency was recorded at room temperature for samples with a doping rate of 5 mol% in europium ions. Effect of rare-earth concentration on internal quantum cutting efficiency was studied. Temperature dependence was also investigated and showed that the down-conversion process upon excitation at 202 nm becomes inefficient at low temperature since energy transfer from Gd3+ ions to Eu3+ ions is not effective any more. Such a result was connected with the thermal population at room temperature of Eu3+7F1 state which is involves in the first step of the energy transfer.  相似文献   

3.
Epitaxially grown ZnO thin film on 6H-SiC(0 0 0 1) substrate was prepared by using a spin coating-pyrolysis with a zinc naphthenate precursor. As-deposited film was pyrolyzed at 500 °C for 10 min in air and finally annealed at 800 °C for 30 min in air. In-plane alignment of the film was investigated by X-ray pole-figure analysis. Field emission-scanning electron microscope, scanning probe microscope, and He-Cd laser (325 nm) was used to analyze the surface morphology, the surface roughness and photoluminescence of the films. In the photoluminescence spectra, near-band-edge emission with a broad deep-level emission was observed. The position of the near-band-edge peak was around 3.27 eV.  相似文献   

4.
The photoluminescence (PL) properties of high quality ZnO thin films grown on Si (1 0 0) substrates using spin coating technique are investigated as a function of temperature in the range 10-300 K. The PL spectra shows dominant donor bound excitonic emission along with free exciton related emission in the UV region. The corresponding activation energy of thermal quenching is found to be . The parameters that describe the temperature dependent red shift of the band-edge transition energy are evaluated using different models. The broadening of the PL peak due to increase in temperature is mainly attributed to the exciton-LO phonon coupling.  相似文献   

5.
We present a study of the optical properties of Gd-doped sol-gel silica glasses densified at different temperatures (from 450 up to 1050 °C) by means of optical absorption (OA) and radio luminescence (RL). The effect of a post-densification rapid thermal treatment (RTT) at approximately 1800 °C is also considered. Room temperature OA and RL measurements have revealed a slight low-energy shift of Gd3+ absorption/emission lines by densification temperature increasing accompanied by a parallel increase of Gd3+ RL intensities, especially strong after RTT. These effects are interpreted on the basis of structural modifications of the silica matrix and of the removal of non-radiative channels competing with Gd3+ emission. Moreover, RL spectra of fully densified samples display high-energy shoulders on the 6P7/2-8S Gd3+ emission possibly related to crystal field splitting of the 6P7/2 state. This interpretation is supported by the temperature dependence of RL spectra, investigated in the 10-320 K temperature interval: an increase of the intensity of high-energy components vs. temperature has been observed, which can be interpreted as due to thermally assisted excitation of electrons belonging to the lower 6P7/2 state to higher crystal field states and their subsequent radiative recombination.  相似文献   

6.
Photoluminescence (PL) from silicon nanocrystals (Si-nc) prepared from pulverised porous silicon and embedded in undoped (SOG) or phosphorus-doped spin-on-glass (SOD) solutions was studied. Effects of rapid thermal annealing on the PL was also investigated. A strong room temperature PL signal was observed at 710 nm due to the recombination of electron-hole pairs in Si-nc and the PL maximum shifts to the blue region as the phosphorus concentration in the spin on glass increases. However, the rapid thermal annealing process (30 s, 900°C) quenches the PL response. These results suggest that for Si-nc/SOG (SOD) the surface termination is efficient but high phosphorus doping of Si-nc is detrimental to the PL.  相似文献   

7.
A pressed CuCl pellet is optically excited at 2 K using an excitation energy in the range from 1892 to 2843 meV, which is far below the bandgap. The steady-state population dynamics unambiguously indicates an unusual two-photon generation of ground-state excitons. At high-excitation levels, the observed spectra exhibit rich spectral features arising from electron-hole plasma and electron-hole droplets formation. This nonresonant two-photon excitation is presumably assisted by impurity bands due to grain boundaries and surfaces in this random semiconductor.  相似文献   

8.
The effect of K+ ions on GdTaO4:Eu3+ thin-film phosphors was investigated in order to improve their luminescent properties. The GdTaO4:Eu0.1, Kx thin films were synthesized by sol-gel process, and characterized through measuring their microstructure and luminescence. The results indicated that photoluminescence (PL) intensity of GdTaO4:Eu3+ film was improved remarkably by K doping. There were two maxima in the curve of PL intensity against K+ dopant concentration, where one was improved up to 2.1 times at x = 0.001 and the other was enhanced up to 2.7 times at x = 0.05. The first maximum was regarded as the alteration of the local environment surrounding the Eu3+ activator by incorporation of K+ ions, and the second maximum was due to the flux effect. Additionally, the luminescence increased with the increase of firing temperature from 800 °C to 1200 °C.  相似文献   

9.
Transparent Li-doped Gd2O3:Eu3+ thin-film phosphors were prepared by a modified sol-gel method. The effect of the Li+ ions on luminescent properties of the thin film was investigated. The results indicated that incorporation of Li+ ions into Gd2O3 lattice could result in a remarkable increase on photoluminescence or X-ray excited luminescence, and the strongest emission was observed from Gd1.84Li0.08Eu0.08O3−δ film, in which the intensity was increased by a factor of 1.9 or 2.3 in comparison with that of Gd1.92Eu0.08O3 film. And it could be achieved the highest intensity for sintering the Gd1.84Li0.08Eu0.08O3−δ film at 700 °C. Such a temperature is much lower than the typical solid-state reaction temperature for its powder phosphors. This kind of transparent thin-film phosphors may promise for application to micro X-ray imaging system.  相似文献   

10.
The 96GeO-(3-χ)Al2O3-χNa2O-1NaBiO3 (χ = 0, 0.5, 1.5 molar percent designated as A1, A2 and A3) and 96GeO-(3.5-ψ)Al2O3-ψNa2O-0.5Bi2O3 (ψ = 0.5, 1, 2 molar percent designated as B1, B2 and B3) glasses were prepared by conventional melting method with the measurement of their DTA curve, fluorescence decay curve, transmission, absorption and emission spectra. The near infrared superbroadband emission characteristics of the A1, A2, B1 and B2 glasses peak at ∼1220 nm were observed when pumped by an 800 nm laser diode. The stimulated emission cross section (σp) was obtained from the emission spectra. The result indicated that the introduction of Bi5+ in NaBiO3 into raw materials could increase the emission intensity of the obtained glasses by 5.6 times than that of Bi3+ in Bi2O3, and the FWHM (Δλ) and emission lifetime (τ) at 1220 nm increased from 195 nm to 275 nm, and 280 μs to 434 μs. Meanwhile, it was found that the absorption edges were blue-shifted from 486 to 447 nm by comparing those of A1 and B1. The absorption edges were considered to be ascribed to the charge transfer from Bi3+ 6s2 to Bi5+ 6s0. Therefore we could conclude that the content of Bi5+ ions in A1 was more than that in B1 glasses. It could be deduced from the emission and absorption spectra that the stronger emission intensity and wider FWHM were due to the higher concentration of Bi5+ ion in glass. In particular, the increase of Na2O content was in proportion to the thermal stability and the value of σp × τ and σp × Δλ of glasses.  相似文献   

11.
The photoluminescence properties—intensity IPL, emission energy EPL and decay lifetime τPL—of silicon-rich silicon oxide (SRSO)/silica (SO) multilayers are investigated as a function of the optical pump flux (φ) of an argon laser and the measurement temperature in four kinds of samples corresponding to different SRSO sublayer thicknesses (namely 0.7, 1.4, 3.3 and 4.5 nm). The excitons created by the incident laser light mainly within the SRSO layers or at the SRSO/silica interface are confined in the multilayer growth direction (normal to the layers). This so-called 1D exciton quantum confinement effect has been independently described by two models (the state filling, the electron-hole exchange interaction). It is shown in this paper that both models are complementary since we have been able to reproduce, on the one hand, flux dependence of main PL features (energy, intensity and lifetime) of all fabricated samples and on the other hand, the evolution of the singlet-triplet energy splitting as a function of the SRSO sublayer thickness.  相似文献   

12.
This work reports the preparation, characterization and applications of silver nanoparticles synthesized through the chemical reduction of AgNO3 and protected by surface modifier. In order to characterize the formation of nanoparticles and the role of synthesis parameters (time, temperature) several studies were made, such as UV-vis spectroscopy, TEM and AFM. We present the incorporation of Ag nanoparticles in sol-gel obtained matrix, because this technique allows the incorporation of larger concentrations of active optical agents and the obtainment of full-dense films at lower temperature than those possible by other methods. The final goal of this work is the preparation of 80SiO2·20B2O3 films for active optical waveguides doped with Ag nanoparticles and Erbium. We are looking for the reinforcement of the fluorescence intensity due to the effect of the resonant coupling of both optical agents (Er and nanoparticles) to produce optical amplifiers.  相似文献   

13.
Pr3+‐doped Lu2Si2O7 (LPS:Pr) microcrystalline phosphor was prepared by the sol–gel method. We study the LPS:Pr luminescence properties under UV and X‐ray excitation within 80–500 K. The emission spectrum is dominated by fast 5d–4f band peaking at 261 nm having 16 ns decay time. By purely optical contactless methods we determine the energy barrier of 300 meV for thermal ionization of the Pr3+ 5d1 relaxed excited state in LPS host. The barrier is high enough to keep the room temperature quantum efficiency of the Pr3+ luminescence center close to unity. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We have developed a simple N-cetyl-N,N,N-trimethyl ammonium bromide (CTAB)-assisted hydrothermal route for the production of ZnO one-dimensional (1D) nanostructures on zinc foil at reaction temperature of 160 °C. With the increase of CTAB concentration, the one-dimensional structures change from microrod to a mixture of nano- and microrod and finally to nanorods. X-ray diffraction studies confirmed the proper phase formation of the grown nanostructures. The room temperature photoluminescence spectra showed that ZnO nanostructures prepared with increased CTAB concentration exhibited enhanced band edge UV emission and also blue shift of the emission peak. All the samples show no defect related green emission. Field emission property of the 1D structures has been investigated in detail. By tuning the CTAB concentration, the field emission property was optimized. The nanorods synthesized with high CTAB showed turn-on and threshold fields of 3.2 and 5 V/μm, respectively, which are comparable to the values for vapour phase synthesized high field emitting ZnO nanostructures.  相似文献   

15.
Luminescent materials have been prepared by wet impregnation of Europium (III) dibenzoylmethane complexes in either non-silylated or silylated mesoporous MCM-48 silica. Silylation and incorporation of the Eu (III) complex were confirmed by Nuclear Magnetic Resonance, N2-sorption, X-ray diffraction and Infrared spectroscopy. The luminescence properties were investigated at room and high temperatures up to 200 °C. Information on host-guest interactions were collected by analyzing the optical characteristics of the Eu (III) ions in the different media. In particular, the intensity parameter Ω2 is confirmed to be a useful spectroscopic probe for Eu (III) first coordination shell interaction. The role of the O2−—Eu3+ charge transfer band and the impact of the silylation on the luminescence properties at room and high temperatures is demonstrated.  相似文献   

16.
We have enhanced color-rendering property of a blue light emitting diode (LED) pumped white LED with yellow emitting Y3Al5O12:Ce3+ (YAG:Ce) phosphor using addition of Pr and Tb as a co-activator and host lattice element, respectively. Pr3+ addition to YAG:Ce phosphor resulted in sharp emission peak at about 610 nm through 1D23H4 transition. And when Tb3+ substituted Y3+ sites, Ce3+ emission band shifted to a longer wavelength due to larger crystal field splitting. Y3Al5O12:Ce3+, Pr3+ and (Y1−xTbx)3Al5O12:Ce3+ phosphors were coated on blue LEDs to fabricate white LEDs, respectively, and their color-rendering indices (CRIs, Ra) were measured. As a consequence of the addition of Pr3+ or Tb3+, CRI of the white LEDs improved to be Ra=83 and 80, respectively. Especially, blue LED pumped (Y0.2Tb0.8)3Al5O12:Ce3+ white LED showed both strong luminescence and high color-rendering property.  相似文献   

17.
Ytterbium ions infrared and visible cooperative luminescences, resulting from YAG laser and selective site excitations, in (6%) Yb-doped Y2SiO5 thin film are analyzed. Magnetically coupled Yb-Yb ion pairs seem to play a major role in energy transfer and cooperative emission, confirming the prevalence of superexchange mechanisms.  相似文献   

18.
Pb1−XLaXTiO3 thin films, (X=0.0; 13 and 0.27 mol%) were prepared by the polymeric precursor method. Thin films were deposited on Pt/Ti/SiO2/Si (1 1 1), Si (1 0 0) and glass substrates by spin coating, and annealed in the 200-300°C range in an O2 atmosphere. X-ray diffraction, scanning electron microscopy and atomic force microscopy were used for the microstructural characterization of the thin films. Photoluminescence (PL) at room temperature has been observed in thin films of (PbLa)TiO3. The films deposited on Pt/Ti/SiO2/Si substrates present PL intensity greater than those deposited on glass and silicon substrates. The intensity of PL in these thin films was found to be dependent on the thermal treatment and lanthanum molar concentration.  相似文献   

19.
We synthesized two new compounds: Sodium 2-(4′-dimethyl-aminocinnamicacyl)-3,3-(1′,3′- ethyl- enedithio) acrylate (STAA-1) and Sodium 2-(4′-dimethyl-aminocinnamicacyl)-3, 3-(1′,3′-propylenedithio) acrylate (STAA-2). The maximum absorption of these compounds ranges from 460 to 520 nm with different molecular structures in different solvents. Meanwhile, the emission peak of these compounds arranges from yellow (510 nm) to red (605 nm). The emission spectra show red shift according to the strength of the hydrogen bonding property of the solvent. But the absorption spectra do not show clearly relationship with the strength of the hydrogen bonding property of the solvent. The Stoke shift of the compounds ranges from 42 to 102 nm. It changes in the following order, EtOH>H2O>DMF, and STAA-1>STAA-2 in the same solvent. The fluorescent quantum yield of STAA-1 was measured to be 7.12% with quinine sulphate as the standard compound in ethanol. Furthermore, the relationship of the fluorescence of STAA-1 with pH (ranges form 4 to 14) in water (c=∼10−4) was studied to make sure that these compounds could be used as proton sensors.  相似文献   

20.
Mg2+-, Ca2+-, Sr2+- and Ba2+-doped silica glasses have been prepared using sol-gel processing by employing Si(OC2H5)4, MgCl26H2O, CaCl22H2O, SrCl26H2O and BaCl22H2O as precursors, with HCl as a catalyst. The UV–visibleabsorption spectra of the doped samples are almost the same as those of the undoped sample. The absorption bands of alkaline earth metallic ions have not been observed in the doped samples. Strong visible light has been observed from sol- gel silica glasses doped with alkaline earth metallic ions. The relative fluorescence intensity of the Sr2+-doped (the impurity mole ratio of Sr2+ was 0.268%) and the Ba2+-doped (the impurity mole ratio of Ba2+ was 0.448%) samples was about 4 times that of the undoped sample. The relative fluorescence intensity of the Mg2+-doped (the impurity mole ratio of Mg2+ was 0.069%) sample was about 2.5 times that of the pure glass sample. The relative fluorescence intensity of the Ca2+- doped (the impurity mole ratio of Ca2+ was 0.179%) sample was about 3 times that of the pure glass sample. Alkaline earth metallic ions affect the formation and conversion of luminescent defects in sol-gel silica glass. Thus, the relative fluorescence intensity of the doped samples increases more than that of the undoped sample. Received: 17 April 2001 / Accepted: 6 June 2001 / Published online: 30 August 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号