首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enhanced photoluminescence (PL) mechanism of Er3+-doped Al2O3 powders by Y3+ codoping at wavelength 1.53 μm has been investigated through PL measurements of 0.1 mol% Er3+- and 0-20 mol% Y3+-codoped Al2O3 powders prepared at a sintering temperature of 900 °C in a non-aqueous sol-gel method. PL intensity and lifetime of Er3+-Y3+-codoped Al2O3 powders composed of γ-(Al,Er,Y)2O3 and θ-(Al,Er,Y)2O3 phases increased with increasing Y3+-codoping concentration. The 10-20 mol% Y3+ codoping in 0.1 mol% Er3+-doped Al2O3 powders intensified the PL intensity by about 20 times, with a PL lifetime prolonged from 3.5 to 5.8 ms. A maximal increase of the optical activity of Er3+ in 0.1 mol% Er3+-Y3+-codoped Al2O3 powders about one order was achieved by 10-20 mol% Y3+ codoping. It is found that the improved PL properties for Er3+-Y3+-codoped Al2O3 powders are mainly attributed to enhanced optical activation of Er3+ in the Al2O3 by Y3+ codoping, and to the slightly increased radiative quantum efficiency of Er3+ in the Al2O3.  相似文献   

2.
Up-conversion luminescence and energy transfer (ET) processes in Nd3+-Yb3+-Er3+ triply doped TeO2-ZnO-Na2O glasses have been studied under 800 nm excitation. Intense green up-conversion emissions around 549 nm, which can be attributed to the Er3+: 4S3/24I15/2 transition, are observed in triply doped samples. In contrast, the green emissions are hardly observed in Er3+ singly doped and Er3+-Yb3+ codoped samples under the same condition. Up-conversion luminescence intensity exhibits dependence of Yb2O3-concentration and Nd2O3-concentration. Up-conversion mechanism in the triply doped glasses under 800 nm pump is discussed by analyzing the ET among Nd3+, Yb3+ and Er3+. And a possible up-conversion mechanism based on sequential ET from Nd3+ to Er3+ through Yb3+ is proposed for green and red up-conversion emission processes.  相似文献   

3.
Er3+ doped and Yb3+/Er3+ co-doped Y4Al2O9 phosphors are prepared by the sol-gel method. The effect of dopant concentration on the structure and up-conversion properties is investigated by X-ray diffraction (XRD) and photoluminescence, respectively. XRD pattern indicates that the sample structure belongs to monoclinic. Under 980 nm excitation, the green and red up-conversion emissions are observed and the emission intensities depended on the Yb3+ ion concentration. The green up-conversion emissions decrease with the increase of Yb3+ concentration, while red emission increases as Yb3+ concentration increases from 0 to 8 at% and then decreases at high Yb3+ concentration. The mechanisms of the up-conversion emissions are discussed and results shows that in Er3+ and Yb3+/Er3+ co-doped system, cross-relaxation (CR) and energy transfer (ET) processes play an important role for the green and red up-conversion emissions.  相似文献   

4.
B.S. Cao  Y.Y. He  M. Song 《Optics Communications》2011,284(13):3311-3314
Crystalline structures and infrared-to-visible upconversion luminescence spectra have been investigated in 1 mol% Er3+, 10 mol% Yb3+ and 0-20 mol% Li+ codoped TiO2 [1Er10Yb(0-20)Li:TiO2] nanocrystals. The crystalline structures of 1Er10Yb(0-20)Li:TiO2 were divided into three parts by the addition of Yb3+ and Li+. Both green and red upconversion emissions were observed from the 2H11/2/4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 transitions of Er3+ in Er3+-Yb3+-Li+ codoped TiO2, respectively. The green and red upconversion emissions of 1Er:TiO2 were enhanced significantly by Yb3+ and Li+ codoping, in which the intensities of green and red emissions and the intensity ratio of green to red emissions (Igreen/Ired) were highly dependent on the crystalline structures. The significant enhanced upconversion emissions resulted from the energy migration between Er3+ and Yb3+ as well as the distortion of crystal field symmetry of Er3+ caused by the dissolving of Li+ at lower Li+ codoping concentration and the phase transformation at higher Li+ concentration. It is concluded that codoping with ions of smaller ionic radius like Li+ can efficiently improve the upconversion emissions of Er3+ or other rare-earth ions doped luminsecence materials.  相似文献   

5.
The up-conversion (UC) and near infrared (NIR) luminescence of Er3+/Yb3+ co-doped phosphate glass are investigated. In the UC emission range, the 523 nm, 546 nm green emissions and the 659 nm red emission are observed. With the increasing pump power, the intensity ratios of I523/I659, I546/I659 and I523/I546 increase gradually. The phenomenon is reasonably interpreted by theoretical analysis based on steady state rate equations. The emission cross section of the infrared emission at 1546 nm is larger (about 6.7 × 10− 21 cm2), which is suitable for making fiber amplifier.  相似文献   

6.
The comparative investigation on the spectroscopic properties of Er3+ in low phonon energy Bi2O3-GeO2-Ga2O3-Na2O glasses codoped with Ce3+ ion and added with B2O3 component, respectively, is presented. With increasing Ce2O3 content from 0 to 0.8 mol% or B2O3 content from 0 to 15 mol%, the lifetime of Er3+:4I11/2 level decreases dramatically from 607 to 283 μs or to 197 μs, and the upconversion fluorescence is quenched in both glass samples. The nonradiative energy transfer from Er3+:4I11/2→Ce3+:2F5/2 or the enhanced multiphonon relaxation process together with the energy transfer between Er3+ and OH groups are, respectively, responsible for the results. Meanwhile, the lifetime of 4I13/2 level remains almost unchanged in Er3+/Ce3+-codoped glasses whereas it decreases rapidly in B2O3-added cases. As a result, Er3+/Ce3+ codoping improves the 1.5 μm fluorescence emission intensity, however, B2O3 addition has a negative effect on it. The research results indicate that the Er3+/Ce3+-codoped bismuth glasses will be preferable for obtaining efficient 980 nm pumped EDFA.  相似文献   

7.
We have studied upconversion luminescence of colloidal solution of Y2O3 nano-particles codoped with 1 mol% Er3+ and 5 mol% Yb3+. Y2O3 nano-particles codoped with 1 mol% Er3+ and 5 mol% Yb3+ show sintering and agglomeration, because they are synthesized by firing a hydroxy carbonate precursor. Colloidal solution of Y2O3 nano-particles codoped with 1 mol% Er3+ and 5 mol% Yb3+ is prepared through two-step dispersion process and the average diameter of the primary nano-particles is about 50 nm. Under excitation with 980-nm laser diode, upconversion luminescence of colloidal solution of the primary Y2O3 nano-particles codoped with 1 mol% Er3+ and 5 mol% Yb3+ in methyl isobuthyl ketone strongly appeared near 660 nm and weakly near 550 nm.  相似文献   

8.
This paper reports on the absorption, visible and near-infrared luminescence properties of Nd3+, Er3+, Er3+/2Yb3+, and Tm3+ doped oxyfluoride aluminosilicate glasses. From the measured absorption spectra, Judd-Ofelt (J-O) intensity parameters (Ω2, Ω4 and Ω6) have been calculated for all the studied ions. Decay lifetime curves were measured for the visible emissions of Er3+ (558 nm, green), and Tm3+ (650 and 795 nm), respectively. The near infrared emission spectrum of Nd3+ doped glass has shown full width at half maximum (FWHM) around 45 nm (for the 4F3/24I9/2 transition), 45 nm (for the 4F3/24I11/2 transition), and 60 nm (for the 4F3/24I13/2 transition), respectively, with 800 nm laser diode (LD) excitation. For Er3+, and Er3+/2Yb3+ co-doped glasses, the characteristic near infrared emission bands were spectrally centered at 1532 and 1544 nm, respectively, with 980 nm laser diode excitation, exhibiting full width at half maximum around 50 and 90 nm for the erbium 4I13/24I15/2 transition. The measured maximum decay times of 4I13/24I15/2 transition (at wavelength 1532 and 1544 nm) are about 5.280 and 5.719 ms for 1Er3+ and 1Er3+/2Yb3+ (mol%) co-doped glasses, respectively. The maximum stimulated emission cross sections for 4I13/24I15/2 transition of Er3+ and Er3+/Yb3+ are 10.81×10−21 and 5.723×10-21 cm2. These glasses with better thermal stability, bright visible emissions and broad near-infrared emissions should have potential applications in broadly tunable laser sources, interesting optical luminescent materials and broadband optical amplification at low-loss telecommunication windows.  相似文献   

9.
A series of Er3+/Yb3+-co-doped 60Bi2O3-(40−x) B2O3 -xGa2O3 (BBGA x=0, 4, 8, 12, 16 mol%) glasses have been prepared. The absorption spectra, emission spectra, fluorescence lifetime of Er3+:4I13/2 level and thermal stability were measured and investigated. Three Judd-Ofelt intensity parameters Ωt (t=2,4,6) (Ω2=(4.67-5.93)×10−20 cm2, Ω4=(1.50-1.81)×10−20 cm2, Ω6=(0.92-1.17)×10−20 cm2) of Er3+ ions were calculated by Judd-Ofelt theory. It is found that the Ω6 first increases with the increase of Ga2O3 content from 0 to 8 mol% and then decreases, which is mainly affected by the number of non-bridging oxygen ions of the glass network. The high peak of stimulated emission cross-section () of Er3+: 4I13/24I15/2 transition were obtained according to McCumber theory and broad full width at half maximum (FWHM=69-76 nm) of the 4I13/24I15/2 transition of Er3+ ions were measured. The results indicate that these new BBGA glasses can be used as a candidate host material for potential broadband optical amplifiers.  相似文献   

10.
The absorption and upconversion fluorescence spectra of a series of Er3+/Yb3+-codoped natrium-germanium-bismuth glasses have been studied. The transition probabilities, excited state lifetimes, and the branching ratios have been predicted for Er3+ based on the Judd-Ofelt theory. At room temperature, an upconversion efficiency of 6.1×10−2 has been obtained for the green emission from the glass with 0.5 wt% Er2O3 and 3.0 wt% Yb2O3 pumped by 980 nm radiation with an intensity of 270 W/cm2. And the “standardized” efficiency for green upconversion light is higher than that reported in lead-germanate, lead-tellurite-germanate, and silicate glasses. The results indicate that the Er3+/Yb3+-codoped natrium-germanium-bismuth oxide glass may be a potential material for developing upconversion optic devices.  相似文献   

11.
Optical absorption and emission spectra of Er3+/Yb3+ ions in PLZT (Pb1−xLaxZryTi1−yO3) ceramic have been studied. Based on the Judd—Ofelt (J-O) theory, the J-O intensity parameters were calculated to be Ω2=2.021×10−20 cm2, Ω4=0.423×10−20 cm2, Ω6=0.051×10−20 cm2 from the absorption spectrum of Er3+/Yb3+-codoped PLZT. The J-O intensity parameters have been used to calculate the radiative lifetimes and the branching ratios for some excited 4I13/2, 4I11/2, 4I9/24F9/2, and 4S3/2 levels of Er3+ ion. The stimulated emission cross-section (8.24×10−21 cm2) was evaluated for the 4I13/24I15/2 transition of Er3+. The upconversion emissions at 538, 564, and 666 nm have been observed in Er3+/Yb3+-codoped PLZT by exciting at 980 nm, and their origins were identified and analyzed.  相似文献   

12.
Sol-gel法制备Er3+-Yb3+共掺杂Al2O3粉末光致发光特性   总被引:8,自引:7,他引:1  
采用异丙醇铝[Al(OC3H7)3]为前驱体,溶胶-凝胶(Sol-gel)法制备Er3+-Yb3+共掺杂Al2O3粉末.实验结果表明:900 ℃烧结的粉末为固溶Er3+、Yb3+的γ-(Al,Er,Yb)2O3相和少量θ-(Al,Er,Yb)2O3相的混合物.Er3+-Yb3+共掺杂Al2O3粉末具有中心波长为1.533 μm的光致发光(PL)特性.1 mol % Er3+和1 mol% Yb3+共掺杂的Al2O3粉末的PL强度较1 mol % Er3+掺杂提高2倍,半峰宽从53 nm增加到63 nm.随泵浦功率的提高,PL强度呈线性增加后渐呈饱和趋势.  相似文献   

13.
The effect of the defects due to the charge compensation obtained with the yttrium co-doping to the ZrO2:Yb3+,Er3+ up-converting phosphors was studied. The materials were prepared with the combustion method. The materials purity was analyzed with the FT-IR spectroscopy. The crystal structure was studied with the X-ray powder diffraction and the crystallite sizes were estimated with the Scherrer formula. Up-conversion luminescence was excited at room temperature with an IR-laser at 970 nm. The up-conversion luminescence spectra showed red (650-685 nm) and green emission (520-560 nm) due to the 4F9/24I15/2 and (2H11/2,4S3/2)→4I15/2 transitions of Er3+, respectively. Persistent up-conversion luminescence was observed both in the Yb3+,Er3+ and Y3+,Yb3+,Er3+ doped materials.  相似文献   

14.
We have investigated the optical properties of sol-gel thin films of tin dioxide (SnO2) codoped with Er3+-Yb3+ as a function of Yb3+ concentration. The Judd-Ofelt model has been applied to absorption intensities of Er3+ (4f11) transitions to establish the so-called Judd-Ofelt intensity parameters: Ω2, Ω4, Ω6. Various spectroscopic parameters were obtained to evaluate their dependence and the potential of the samples as a laser material in the eye-safe laser wavelength (1.53 μm) as a function of Yb3+ concentration. An amelioration of the quality factor Ω4/Ω6 was found with Yb content. Both the IR photoluminescence (PL) intensity and the up-conversion emission, from Er3+ ion in SnO2, were found to increase with Yb concentration. We show that the Yb3+ ion acts as sensitizer for Er3+ ion and contributes largely to the improvement of the spectroscopic properties of SnO2:Er. The mechanism of up-conversion emission is discussed and a model is proposed. The results showed that sol-gel SnO2 is promising gain media for developing the solid-state 1.5 μm optical amplifiers and tunable up-conversion lasers.  相似文献   

15.
Uniform Yb3+ and Er3+-codoped Y2O3 hollow microspheres were synthesized via urea co-precipitation using carbon spheres as templates. Intense red emission (4F9/24I15/2) and weak green emission (2H11/2, 4S3/24I15/2) of Er3+ were observed for the Yb3+ and Er3+-codoped Y2O3 hollow microspheres under 980 nm infrared excitation. The integrated intensity of visible emission and the ratio of red to green were found to be strongly dependent on the amount of carbon sphere templates and the concentration of Yb3+ ions. The amount of carbon sphere templates also plays an important role in adjusting the size of crystallite. Multi-phonon relaxation resulted from the absorbents (OH and CO32−) on the surface of the crystallite, and efficient occur of energy transfer processes and cross-relaxation between Er3+ and Yb3+ are responsible for the enhancement of intensity ratio of red to green emission. Interestingly, for higher concentration of Yb3+ ions, the green emission is assigned to a three-phonon process in Y2O3:Yb/Er hollow microspheres, which also could result in the increase of the red to green emission ratio. An explanation to account for these behaviors was presented.  相似文献   

16.
Ultraviolet (UV) upconversion (UC) luminescence in Yb3+/Er3+-codoped yttrium oxide (Y2O3) nanocrystals can be enhanced by orders of magnitude via tridoping further with Li+ ions under diode laser excitation of 970 nm. Sensitized three-photon UC radiations at 390 and 409 nm, corresponding to the 4G11/24I15/2 and 4H9/24I15/2 of Er3+ ions, respectively, present an enhancement time of about 33 times, which is larger than the 24 times enhancement for the UC green radiation. The UV UC radiation at 320 nm that corresponds to the 2P3/24I15/2 of Er3+ ions has also been greatly enhanced. Theoretical calculations interpret that all the observed enhancement times of UV UC radiations arise from the prolonged lifetimes of their intermediate states.  相似文献   

17.
谭鑫鑫  吕树臣 《光子学报》2014,39(7):1169-1175
采用共沉淀法制备了纳米晶ZrO2-Al2O3∶Er3+发光粉体.所制备的粉体室温下具有Er3+离子特征荧光发射,主发射在绿光,其中位于547 nm、560 nm的绿光最强,并得出稀土离子与基质之间有能量传递.对不同煅烧温度下的样品研究表明:因不同温度下所制得的样品晶相不同.研究了纳米晶ZrO2-Al2O3∶Er3+及ZrO2-Al2O3∶Er3+/Yb3+的上转换发光,并分析了上转换的跃迁机制.发现ZrO2-Al2O3∶Er3+的绿光为双光子过程,而ZrO2-Al2O3∶Er3+、Yb3+的上转换光谱中,红光和绿光也为双光子过程,而极弱的蓝光为三光子过程.讨论了Er3+的浓度猝灭现象.最适宜掺杂浓度的原子分数为2%(Er3+/Zr4+).  相似文献   

18.
Intense infrared-to-visible up-conversion (UC) emissions were obtained in hexagonal Yb3+-Tm3+ co-doped NaYF4 nanorods under excitation at 980 nm. Especially, luminescent switching between different UC emission wavelengths at 800, 480 and 450 nm were observed by adjusting excitation powers. Based on power-dependent spectral analyses, it was found that the cooperative energy transfer between Yb3+-Yb3+ pairs and Tm3+ ions play a key role on the luminescent switching besides the saturation effect of Yb3+2F5/2 and Tm3+1G4 excited states. Our results indicate that hexagonal NaYF4 nanostructures have potential applications in miniaturized solid-state laser, optical processing sensors and fluorescent biolabels.  相似文献   

19.
We have prepared Er3+/Yb3+ co-doped transparent phosphate glass ceramics by the high-temperature melting technique, and demonstrated the influence of energy acceptors Ce3+ ions on the up-conversion and 1.54 μm emission properties of Er3+. The energy transfer mechanism is discussed based on the energy matching and the energy level structure. The phonon-assisted energy transfer between Er3+ and Ce3+ favors population feeding from the 4I11/2 to the 4I13/2 level, and therefore drastically decreases the up-conversion emission intensity of Er3+. Meanwhile, 1.54 μm fluorescence enhances greatly with the introduction of Ce3+ ions at the proper concentration.  相似文献   

20.
Using Czochralski (CZ) pulling method, an Er3+/Yb3+-codoped NaY(WO4)2 crystal was prepared. Absorption spectra, emission spectra and excitation spectra of this crystal were measured at room temperature. Some optical parameters, such as intensity parameters, spontaneous emission probabilities and lifetimes, were calculated from absorption spectra with Judd-Ofelt (J-O) theory. Upconversion luminescence excited by a 970 nm diode laser was studied. In this crystal, green upconversion luminescence is particularly intensive. Energy transfer mechanisms that play an important role in upconversion processes were analyzed. Two cross-relaxation processes: 4G11/2 + 4I9/2 → 2H11/2 (or 4S3/2) + 2H11/2 (or 4S3/2), and 4G11/2 + 4I15/2 → 2H11/2 (or 4S3/2) + 2I13/2, which contribute to the intensive green luminescence under 378 nm excitation, were put forward. Background energy transfer 4G11/2(Er3+) + 2F7/2(Yb3+) → 4F9/2(Er3+) + 2F5/2(Yb3+) was also demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号