首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
设计中心波长为520nm,改变有机层厚度,即空穴传输层NPB和发光层Alq3的厚度,分别由10nm逐渐增加至100nm,器件的总体厚度也随着改变,分别计算模拟出有机电致发光器件(OLED)和微腔有机电致发光器件(MOLED)的电致发光谱(EL),并对光谱的积分强度、峰值强度、半峰全宽、峰值位置的三维分布图进行比较分析。综合考虑光谱的峰值位置(中心波长)、最大的峰值强度和积分强度(与亮度、效率相关)、最小半峰全宽(色纯度高)进行合理的设计,可以找到最佳厚度。发现:NPB和Alq3的厚度分别为70和62nm时,器件性能最佳,并且微腔器件的结果尤为明显。结果表明,通过模拟计算,可以深入探索MOLED和OLED发光特性,设计出合理的器件结构。  相似文献   

2.
Small molecular organic light-emitting diodes (MOLED) and polymer organic light-emitting diodes (POLED) were fabricated with yellow light emission phosphorescent dye bis[2-(4-tert-butylphenyl)benzothiazolato-N,C2′] iridium (III) (acetylacetonate) doped in different hosts. The electroluminescent (EL) spectra of both devices shown two peaks generated from iridium dye but the position of main peak changed and became broader for POLED. The maximum luminance of 10,500 cd/m2 achieved at 12.5 V for MOLED is higher than maximum luminance of 9996 cd/m2 at 20 V for POLED. The maximum power efficiency of small molecular device is 6.4 lm/W, which is higher than 2.3 lm/W of polymer device, but the efficiency of both devices will roll off at large current density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号