首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Phosphors CaYBO4:RE3+ (RE=Eu, Gd, Tb, Ce) were synthesized with the method of solid-state reaction at high temperature, and their vacuum ultraviolet (VUV)-visible luminescent properties in VUV-visible region were studied at 20 K. In CaYBO4, it is confirmed that there are two types of lattice sites that can be substituted by rare-earth ions. The host excitation and emission peaks of undoped CaYBO4 are very weak, which locate at about 175 and 350-360 nm, respectively. The existence of Gd3+ can efficiently enhance the utilization of host absorption energy and result in a strong emission line at 314 nm. In CaYBO4, Eu3+ has typical red emission with the strongest peak at 610 nm; Tb3+ shows characteristic green emission, of which the maximum emission peak is located at 542 nm. The charge transfer band of CaYBO4:Eu3+ was observed at 228 nm; the co-doping of Gd3+ and Eu3+ can obviously sensitize the red emission of Eu3+. The fluorescent spectra of CaYBO4:Ce3+ is very weak due to photoionization; the co-addition of Ce3+-Tb3+ can obviously quench the luminescence of Tb3+.  相似文献   

2.
This letter reports the novel three emission bands based on phosphate host matrix, KBaPO4 doped with Eu2+, Tb3+, and Sm3+ for white light-emitting diodes (LEDs). The phosphors were synthesized by solid-state reaction and thermal stability was elucidated by measuring photoluminescence at higher temperatures. Eu2+-doped KBaPO4 phosphor emits blue luminescence with a peak wavelength at 420 nm under maximum near-ultraviolet excitation of 360 nm. Tb3+-doped KBaPO4 phosphor emits green luminescence with a peak wavelength at 540 nm under maximum near-ultraviolet excitation of 370 nm. Sm3+-doped KBaPO4 phosphor emits orange-red luminescence with a peak wavelength at 594 nm under maximum near-ultraviolet excitation of 400 nm. The thermal stabilities of KBaPO4:Ln (Ln=Eu2+, Tb3+, Sm3+), in comparison to commercially available YAG:Ce3+ phosphor were found to be higher in a wide temperature range of 25-300 °C.  相似文献   

3.
We have studied the photoluminescence (PL) of (Y, Ln)VO4:Eu3+ (Ln=La and Gd) phosphors and the correlation of the PL of those phosphor with their crystal structure. It is found that (Y, Gd)VO4:Eu3+ phosphors have the same crystal structure as YVO4:Eu3+, which is tetragonal with a little different lattice parameters. In the case of (Y, La)VO4:Eu3+ phosphors, however, the gradual change from tetragonal to monoclinic structure of host lattice was observed as the amount of La ion increased. To investigate the PL property of (Y, Ln)VO4:Eu3+ (Ln=La and Gd) phosphors, vacuum ultraviolet (VUV) and ultraviolet (UV) excitation were used. The favorable crystal structure for the PL intensity of orthovanadate phosphor under 147 and 254 nm excitation was tetragonal containing Gd ion and under 365 nm excitation was monoclinic containing La ion which might have the lowest site symmetry for Eu3+ ion.  相似文献   

4.
Vacuum ultraviolet (VUV) excitation and photoluminescence (PL) properties of Sr(Y, Gd)2O4 doped with Eu3+ were studied. The excitation spectra of SrY1.9Eu0.1O4 and SrY1.0Gd0.9Eu0.1O4 had absorption in the VUV region with the absorption band edge at 149 nm, while the absorption of SrGd1.9Eu0.1O4 in the VUV region was weak, which could be due to the narrow host band gap and no efficient energy transfer occurred in the VUV region. The PL spectra of all samples exhibited the characteristic emission of Eu3+ with the red 5D0-7F2 transition (611 nm) being the most prominent group.  相似文献   

5.
Monoclinic LnPO4:Tb,Bi (Ln=La,Gd) phosphors were prepared by hydrothermal reaction and their luminescent properties under ultraviolet (UV) and vacuum ultraviolet (VUV) excitation were investigated. LaPO4:Tb,Bi phosphor and GdPO4:Tb phosphor showed the strongest emission intensity under 254 and 147 nm excitation, respectively, because of the different energy transfer models. In UV region, Bi3+ absorbed most energy then transferred to Tb3+, but in VUV region it was the host which absorbed most energy and transferred to Tb3+.  相似文献   

6.
Calcium lanthanide oxyborate doped with rare-earth ions LnCa4O(BO3)3:RE3+ (LnCOB:RE, Ln=Y, La, Gd, RE=Eu, Tb, Dy, Ce) was synthesized by the method of solid-state reaction at high temperature. Their fluorescent spectra were measured from vacuum ultraviolet (VUV) to visible region at room temperature. Their excitation spectra all have a broadband center at about 188 nm, which is ascribed to host absorption. Using Dorenbos’ and Jφrgensen's work [P. Dorenbos, J. Lumin. 91 (2000) 91, R. Resfeld, C.K. Jφrgensen, Lasers and Excite States of Rare Earth [M], Springer, Berlin, 1977, p. 45], the position of the lowest 5d levels E(Ln,A) and charge transfer band Ect were calculated and compared with their excitation spectra.Eu3+ and Tb3+ ions doped into LnCOB show efficient luminescence under VUV and UV irradiation. In this system, Ce3+ ions do not show efficient luminescence and quench the luminescence of Tb3+ ions when Tb3+ and Ce3+ ions are co-doped into LnCOB. GdCOB doped with Dy3+ shows yellowish white light under irradiation of 254 nm light for the reason that Gd3+ ions transfer the energy from itself to Dy3+. Because of the existence of Gd3+, the samples of GdCOB:RE3+ show higher excitation efficiency than LaCOB:RE3+ and YCOB:RE3+, around 188 nm, which indicates that the Gd3+ ions have an effect on the host absorption and can transfer the excitation energy to the luminescent center such as Tb3+, Dy3+ and Eu3+.  相似文献   

7.
Synthesis and photoluminescence (PL) investigations of lithium metasilicate doped with Eu3+, Tb3+ and Ce3+ were carried out. PL spectra of Eu-doped sample showed peaks corresponding to the 5D07Fj (j=1, 2, 3 and 4) transitions under ultraviolet excitation. Strong red emission coming from the hypersensitive 5D07F2 transition of Eu3+ ion suggested the presence of the dopant ion in structurally disordered environment. Tb3+-doped silicate sample showed blue-green emission corresponding to the 5D47Fj (j=6, 5 and 4) transitions. Ce-doped sample under excitation from UV, showed a broad emission band in the region 350-370 nm with shoulders around 410 nm. The fluorescence lifetimes of Eu3+ and Tb3+ ions were found out to be 790 and 600 μs, respectively. For Ce3+, the lifetime was of the order of 45 ns. PL spectra of the europium- and terbium-doped samples were compared with commercial red (Y2O3:Eu3+) and green (LaPO4:Tb3+) phosphors, respectively. It was found that the emission from the doped silicate sample was 37% of the commercial phosphor in case of the Tb-doped sample and 8% of the commercial phosphor in case of the Eu-doped sample.  相似文献   

8.
Bi3+- and RE3+-co-doped (Y,Gd)BO3 phosphors were prepared and their luminescent properties under vacuum ultraviolet (VUV)/UV excitation were investigated. Strong red emission for (Y,Gd)BO3:Bi3+,Eu3+ and strong green emission for (Y,Gd)BO3:Bi3+,Tb3+ are observed under VUV excitation from 147 to 200 nm with a much broader excitation region than that of single Eu3+-doped or Tb3+-doped (Y,Gd)BO3 phosphor. Strong emissions are also observed under UV excitation around 265 nm where as nearly no luminescence is observed for single Eu3+-doped or Tb3+-doped (Y,Gd)BO3. The luminescence enhancement of Bi3+- and RE3+-co-doped (Y,Gd)BO3 phosphors is due to energy transfer from Bi3+ ion to Eu3+ or Tb3+ ion not only in the VUV region but also in the UV region. Besides, host sensitization competition between Bi3+ and Eu3+ or Tb3+ is also observed. The investigated phosphors may be preferable for devices with a VUV light 147-200 nm as an excitation source such as PDP or mercury-free fluorescent lamp.  相似文献   

9.
LnAl3(BO3)4:Eu3+ (Ln=Y, Gd) red phosphor particles were prepared by spray pyrolysis and the luminescent intensity under vacuum ultraviolet (VUV) excitation was investigated by changing Eu3+ content, Y/Gd molar ratio, and boron content. The concentration quenching for Eu3+ activator was observed at 5 at%. The highest luminescent intensity at 615 nm due to the 5D07F2 transitions of Eu3+ was achieved when the ratio of Gd to Y was 0.55. The R/O ratio (obtained by dividing the red emission intensity at 615 nm with the orange one at 592 nm), however, was not influenced by the G/Y ratio. Using excess boron, up to 135% of the stoichiometric quantity, improved the emission intensity of LnAl3(BO3)4:Eu3+ red phosphor. According to XRD analysis, the sample prepared using boron of a stoichiometric quantity had YBO3 phase as a minor phase. Such YBO3 phase progressively disappeared with an increase in the excess quantity of boron, which was responsible for the enhancement of emission intensity. In addition, the R/O ratio became larger and larger by increasing the excess content of boron due to a reduction in the symmetry of Y site. Consequently, both the emission intensity and the color coordinate of LnAl3(BO3)4:Eu3+ red phosphors were successfully optimized in terms of the Y/Gd ratio and the excess quantity of boron in spray pyrolysis.  相似文献   

10.
The excitation spectra of M (M=Si4+, Ti4+) and Eu3+ co-doped BaZr(BO3)2, BaZrO3:Eu and La2Zr2O7:Eu in the vacuum ultraviolet (VUV) regions of 110-300 nm are investigated and the host-lattice absorption are characterized. The result indicated that BaZr(BO3)2:Eu3+ phosphor has a strong absorption under the VUV excitation, and in the host-lattice excitation, the strong band at 130-160 nm could be due to the BO3 atomic groups; the band at 160-180 nm is related to the excitation of Ba-O; 180-200 nm corresponds to the charge transfer (CT) transition of Zr-O. The band at 200-235 nm due to the CT band of Eu3+-O2− and a bond valence study explained the observed weak CT band of Eu3+-O2− in the excitation spectra of BaZr(BO3)2:Eu3+. The emission results show that Si4+ can sensitize luminescence in the host of BaZr(BO3)2:Eu but Ti4+ has no improvement effect on luminescence.  相似文献   

11.
The luminescence properties of K3Tb(PO4)2 activated by Eu3+ were studied at excitation over the 120–300 nm wavelength range. It is demonstrated that Tb3+ ions, exhibiting a strong absorption band in the vacuum‐ultraviolet (VUV), can provide efficient sensitisation of Eu3+ emission in this wave length range, giving rise to intense red luminescence at 150 nm excitation. A proof is given for the concept of VUV sensitisation enabling the engineering of luminescence materials with enhanced conversion efficiency of VUV radiation into visible light. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The luminescence properties of Ba3Tb0.9Eu0.1(PO4)3 and Ba3Gd0.9Eu0.1(PO4)3 phosphors were studied for excitation over the 120-300 nm wavelength range. It is found that Tb3+, which exhibits a strong vacuum-ultraviolet (VUV) absorption band, provides sensitisation of Eu3+ emission in this host. This effect can be used to develop phosphors with enhanced conversion efficiency of the VUV radiation into visible light.  相似文献   

13.
A novel green-emitting nano-sized phosphor, Tb3+-doped GdCaAlO4 was synthesized with a precursor prepared by citrate sol-gel method at relatively low temperature. Powder X-ray diffraction (XRD) analysis confirmed the formation of GdCaAlO4. Field-emission scanning electron microscopy (FE-SEM) observation indicated a narrow size-distribution of about ∼100 nm for the particles with a spherical shape. Upon excitation with near UV and vacuum ultraviolet (VUV) light, the phosphor showed strong green-emission peaked at around 546 nm, corresponding to the 5D47F5 transition of Tb3+, and the highest photoluminescence (PL) intensity at 546 nm was found at a content of about 12 mol% Tb3+. As the Tb3+ concentration increases, the fast diffusion of energy among terbium ions toward traps or impurities resulting in a decrease of the lifetime. The optical properties study suggests that it is a potential candidate for plasma display panels (PDPs) application.  相似文献   

14.
Temperature-dependent spectral properties in the cubic Y2O3:Tb3+ nanocrystals (NCs, 10-70 nm) under 488 nm excitation were studied and compared to that in the bulk. In NCs, emission lines assigned to the 5D4-7FJ (J=1-6) transitions of Tb3+ ions and a broad band originated from oxygen defects were observed. As a function of temperature, two intensity maximums of the 5D47FJ transitions appeared in the NCs, at ∼250 and ∼500 K, while in the bulk only one maximum appeared at ∼250 K. The relative intensity of the maximum at ∼500 K to that at ∼250 K increased with decreasing particle size. The intensity maximum of the band emissions that came from the oxygen defects appeared in the range of 500-600 K. The appearance of intensity maximum as a function of temperature was attributed to the rivalry between thermal quenching process and phonon-assisted excitation. The appearance of two maxima in the NCs was attributed to the luminescence contributed by different Tb3+ centers, the internal and the surface. The emission for the surface Eu3+ centers has higher quenching temperature in contrast to that for the internal centers.  相似文献   

15.
YBO3:Eu3+/Tb3+ nanocrystalline thin films were successfully deposited onto quartz glass substrates by Pechini sol-gel dip-coating method, using rare-earth nitrates and boric acid as starting materials. The crystal structure, morphology, chemical composition and photoluminescence property of the films were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy and fluorescence spectrophotometer. The results of XRD, AFM, XPS and FTIR revealed that the films were composed of spherical YBO3:Eu3+/Tb3+ nanocrystals with average grain size of 80 nm. The YBO3:Eu3+ film exhibited strong orange emission at 595 nm and red emission at 615 nm, which were, respectively ascribed to the (5D07F1) and (5D07F2) transitions of Eu3+. The YBO3:Tb3+ film showed dominant green emission at 545 nm due to the 5D4-7F5 transition of Tb3+.  相似文献   

16.
Borate Ba3InB9O18 (BIBO) has been adopted as a host material for phosphors for the first time. Lanthanide ions (Eu3+/Tb3+)-doped BIBO phosphors have been synthesized by solid-state reaction and luminescent properties investigated under ultravoilet (UV) excitation. For red phosphor BIBO:Eu, dominant emission peaking at 590 nm was attributed to 5D07F1 transition of Eu3+, which confirmed that the local site of Eu3+ occupied by In3+ ion in BIBO crystal lattice is at inversion symmetry center. Optimum Eu3+ concentration of BIBO:Eu under UV excitation with 227 nm wavelength is around 40%. The green phosphor BIBO:Tb showed bright green emission at 550 with 232 nm light excited and optimal of Tb3+ concentration measured in BIBO is about 8%. The corresponding luminescence mechanisms of Ln-doped BIBO (Ln=Eu3+/Tb3+) were analyzed. The luminescent intensity of Tb3+ can be significantly improved by co-doping of Bi3+ in the BIBO:Tb lattice. The likely reason was proposed in terms of the different interactions of the host lattice with these ions, and of these ions with each other.  相似文献   

17.
The luminescence properties of BaZr(BO3)2:5% Eu were investigated under ultraviolet (UV) and vacuum ultraviolet (VUV) excitation and different luminescence behaviors were observed by different excitation energies. After the analyses of the luminescence spectra, the result indicates that Eu3+ occupying non-centrosymmetric sites Ba2+ can be excited preferentially under 254 nm excitation, while Eu3+ occupying centrosymmetric sites Zr4+ can be excited preferentially under 147 nm excitation.  相似文献   

18.
Nanocrystalline powders with various Eu3+ concentration (from 1 to 10 mol %) doped La2O3 were prepared via a combustion route. Their structure and morphology were characterized using X-ray diffraction (XRD) and High-resolution transmission electron microscopy. The emission spectra of the as-synthesized samples show that the strongest emission position is centered at 626 nm corresponding to 5D07F2 transition of Eu3+ ions and the intensity change of 626 nm emission is considered as a function of ultraviolet (240 nm) irradiation time. The excitation spectra at 626 nm monitoring indicate that the charge transfer state band is varies with different Eu3+ ion concentration. These results are attributed to the surface defects of the nanocrystals.  相似文献   

19.
The white-light long-lasting phosphors Y2O2S:Tb3+, Sr2+ or/and Zr4+ were prepared and studied. The white-light afterglow emission after the irradiation with 254 nm UV are composed of the blue light emission and the yellowish-green light emission, originating from the transitions of 5D37F5, 5D47F5 in Tb3+ when the Tb3+ concentration is not higher than 0.3 at%. The codoped Sr2+ and Zr4+ ions act as trap-creating ions. The afterglow can last over 21 min in the dark for Y2O2S:Tb3+0.3%, Sr2+4%, Zr4+4% after irradiation by 254 nm ultraviolet light. Y2O2S:Tb3+ may be a promising material for the development of white-light long-lasting phosphor since the Tb3+ has a high luminescent efficiency and the dominant excitation band of 4f →5d is located at 220-300 nm.  相似文献   

20.
We presented the energy transfer from Ce3+ to Eu2+ in CaAl2Si2O8 host. The Ce3+-doped CaAl2Si2O8 phosphor had a strong emission band at 378 nm under the vacuum ultraviolet (VUV) light. This emission spectrum of Ce3+ well overlapped with the excitation spectrum of Eu2+ under the UV illumination. As a result, the energy transfer from Ce3+ to Eu2+ in CaAl2Si2O8 matrix was observed under VUV excitation, which resulted in a significant enhancement of the emission peak intensity at 446 nm. More details about the luminescent properties were presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号