首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 2 毫秒
1.
Chloroaluminate systems are important due to their use in the production of aluminum and sodium metals, in electro-deposition of aluminum alloys, extraction of aromatic hydrocarbons, etc. However, no data on luminescence in these compounds are available. Low melting points and instability due to the high volatility of AlCl3 seem to be deterrents for carrying out such investigations. Synthesis and photoluminescence spectra of Ce3+ activated alkali chloroaluminates and some alkaline earth chloroaluminate phosphors are described for the first time in the present work. A simple wet chemical method is used for the preparation of the phosphor. Very intense emission was observed for LiCl·AlCl3 and NaCl·AlCl3. For the former, the emission attributable to d-f transitions is entirely in the UVA1 (ultraviolet A1) region. The intensity is comparable to that of a commercial phosphor. Ce3+ activated emission in the alkaline earth compounds CaCl2·AlCl3 and MgCl2·2AlCl3 was relatively much weaker.  相似文献   

2.
Ce:YAG晶体和透明陶瓷的光学和闪烁性能   总被引:1,自引:0,他引:1       下载免费PDF全文
采用温梯法生长了Ce:YAG晶体和真空烧结法制备了Ce:YAG透明陶瓷,并对晶体和透明陶瓷的光学和闪烁性能进行了对比研究.Ce:YAG晶体和陶瓷都具有位于230,340和460 nm波段的Ce3+离子的特征吸收带和540 nm附近的发射峰,但Ce:YAG晶体同时存在296和370 nm的色心吸收,其发射峰位于398 nm,而透明陶瓷中不存在.Ce:YAG晶体和陶瓷的X射线荧光中均存在520 nm附近的Ce3+离子发射,但晶体中还存在由反格位缺陷引起的300 nm 关键词: Ce:YAG 闪烁晶体 透明陶瓷  相似文献   

3.
Intense photoluminescence is reported for hydrated bromides of Gd, La and Y (LaBr3·7H2O, CeBr3·7H2O, YBr3·8H2O and GdBr3·n H2O) prepared by the wet chemical method and activated with Ce3+. Intensities are comparable to that for a commercial phosphor (SrB4O7:Eu2+—Sylvania 2052). Luminescence in hydrated salt is usually quenched. The observation of intense luminescence in hydrated bromides is remarkable.  相似文献   

4.
Powder samples of barium aluminate doped with Mn2+ and Ce3+ were prepared by solid-state reaction method and their photoluminescence and thermoluminescence properties were studied. Substitution of Ca/Sr in place of Ba resulted in enhanced emission from Ce3+ ions without changing the spectral profile. Cerium efficiently sensitized the manganese luminescence in barium aluminate. Photoluminescence and thermo luminescence observations have indicated the presence of Vk3+ defects in undoped barium aluminate. However, Barium aluminate (either undoped or doped with manganese) did not exhibit long afterglow.  相似文献   

5.
We have prepared Er3+/Yb3+ co-doped transparent phosphate glass ceramics by the high-temperature melting technique, and demonstrated the influence of energy acceptors Ce3+ ions on the up-conversion and 1.54 μm emission properties of Er3+. The energy transfer mechanism is discussed based on the energy matching and the energy level structure. The phonon-assisted energy transfer between Er3+ and Ce3+ favors population feeding from the 4I11/2 to the 4I13/2 level, and therefore drastically decreases the up-conversion emission intensity of Er3+. Meanwhile, 1.54 μm fluorescence enhances greatly with the introduction of Ce3+ ions at the proper concentration.  相似文献   

6.
Comparative analysis of the luminescent properties of Y3Al5O12:Ce (YAG:Ce) transparent optical ceramics (OС) with those of single crystal (SC) and single crystalline film (SCF) analogues has been performed under excitation by pulsed synchrotron radiation in the fundamental absorption range of YAG host. It has been shown that the properties of YAG:Ce OC are closer to the properties of the SCF counterpart, where YAl antisite defects are completely absent, rather than to the properties of SC of this garnet with large concentration of YAl antisite defects. At the same time, the luminescence spectra of YAG:Ce OC show weak emission bands in the 200-470 nm range related to YAl antisite defects and charged oxygen vacancies (F+ and F centers). YAG:Ce ОС also possesses significantly larger contribution of slow components in the Ce3+ luminescence decay under high-energy excitation in comparison with SC and SCF of this garnet due to the involvement of antisite defects, charged oxygen vacancies as well as boundaries of grains in the energy transfer processes from the host to the Ce3+ ions.  相似文献   

7.
This study reports an approach for enhancing the luminescent properties of Y3Al5O12: Ce3+0.07 using an organic compound precursor. The Y3Al5O12: Ce3+0.07 nano-sized phosphors had a relatively uniform particle size, approximately 50-80 nm, when sintered at 1200 °C for 1 h. The photoluminescence results showed the maximum peak intensity when the concentration of Ce3+ ions was 0.07 mol. The results suggest that nano-sized phosphors synthesized from organic compound precursors can be used as alternative efficiency emitting phosphors in the LED applications.  相似文献   

8.
The paper is devoted to investigation of the luminescent properties of Dy3+ and Dy3+-Ce3+ doped single crystalline films (SCF) grown by LPE method from PbO–B2O3 flux. We have found that the YAG:Dy and YAG:Dy,Ce SCFs possess bright cathodoluminescence in the visible range and good scintillation figure of merit. For this reason LPE grown YAG:Dy and YAG:Dy,Ce SCF are proposed for different applications, namely, as cathodoluminescence screens or screens for microimaging. The Dy3+ co-doping can be also proposed for improvement of the scintillation efficiency of the Ce3+ doped garnet compounds in the SCF form due to Dy3+→ Ce3+ energy transfer and removing the trap related centers in the above RT range.  相似文献   

9.
An enhancement in NIR luminescence from Nd3+-doped Ce3+ co-doped SiO2+Al2O3 sol–gel glasses has been observed. The lasing transition (4F3/24I11/2) at 1072 nm from the dual rare-earth Nd3++Ce3+-doped glasses has shown an emission strength of about five times that of the single rare-earth ion Nd3+-doped glass. From the measurement of lifetimes of the transition at 1072 nm, the transfer rate (Wtr), critical distance (R0) and energy transfer efficiency (η) of the neodymium glasses have been calculated.  相似文献   

10.
The title compound was prepared by precipitation followed by thermal annealing at 1000 °C. Photoluminescence of Ce3+ was studied. In this host, Ce3+ exhibits PL that is totally different from that observed for the constituent fluorides. For 5 mol% Ce, blue emission was observed with a maximum at 449 nm corresponding to near UV excitation. It is suggested that these characteristics can be useful for obtaining a low cost, blue phosphor for the solid state lighting using near UV LED.  相似文献   

11.
We have fabricated Cr3+ and Nd3+ co-doped YAG (Cr;Nd:YAG) ceramics, and investigated their optical properties and laser characteristics. The Cr;Nd:YAG has two broad absorption bands at around 440 nm (4A24T1) and 600 nm (4A24T2) respectively, caused by Cr3+ ions. In the case of pumping at 440 nm, the maximum effective lifetime of the Cr;Nd:YAG was 737 μs with a 0.1 at% Cr3+ and 1.0 at% Nd3+ co-doped YAG sample. Cr3+ ions take a role of an effective sensitizer to convert the UV light of flashlamp. For single-shot laser operation, a 10.4 J output energy at 1064 nm was obtained with 0.1 at% Cr3+ and 1.0 at% Nd3+ co-doped YAG ceramic rod with a laser efficiency of 4.9%. The laser efficiency was found to be more than twice that of a 1.0 at % Nd3+:YAG ceramic rod.  相似文献   

12.
In this work, the Ce3+ doped gadolinium-calcium-silicaborate glass scintillators of the composition ratio 25Gd2O3:10CaO:10SiO2:(55−x)B2O3:xCeF3, have been fabricated by using the melt-quenching technique. The doping concentration of the Ce3+ was varied from 0.05 mol% to 2.5 mol%. The 4f-5d transition of the Ce3+ allowed scintillation with a fast decay time. The absorption spectrum, X-ray induced emission spectrum, photo luminescence spectrum, laser luminescence spectrum and decay time of the scintillators were measured for studying the luminescence properties. From the X-ray induced emission spectrum result, we checked the trend between doping concentration and light yield. The laser induced luminescence spectrum was measured while changing the temperature from 300 K to 10 K. We also measured the decay time by using the laser excitation of the 0.15 mol% Ce3+ doped glass scintillator.  相似文献   

13.
This report presents the luminescence properties of Ce3+ and Pr3+ activated Sr2Mg(BO3)2 under VUV-UV and X-ray excitation. The five excitation bands of crystal field split 5d states are observed at about 46 729, 44 643, 41 667, 38 314 and 29 762 cm−1 (i.e. 214, 224, 240, 261 and 336 nm) for Ce3+ in the host lattice. The doublet Ce3+ 5d→4f emission bands were found at about 25 840 and 24 096 cm−1 (387 and 415 nm). The influence of doping concentration and temperature on the emission characteristics and the decay time of Ce3+ in Sr2Mg(BO3)2 were investigated. For Pr3+ doped samples, the lowest 5d excitation band was observed at about 42017 cm−1 (238 nm), a dominant band at around 35714 cm−1 (280 nm) and two shoulder bands were seen in the emission spectra. The excitation and emission spectra of Ce3+ and Pr3+ were compared and discussed. The X-ray excited luminescence studies show that the light yields are ∼3200±230 and ∼1400±100 photons/MeV of absorbed X-ray energy for the samples Sr1.86Ce0.07Na0.07Mg(BO3)2 and Sr1.82Pr0.09Na0.09Mg(BO3)2 at RT, respectively.  相似文献   

14.
The detailed comparative analysis of luminescent and scintillation properties of the single crystalline films (SCF) of YAG:Ce garnet grown from melt-solutions based on the traditional PbO-based and novel BaO-based fluxes, and of a YAG:Ce bulk single crystal grown from the melt by the Czochralski method, was performed in this work. Using the 241Am (α-particle, 5.49 MeV) excitation we show that scintillation yield and energy resolution of the optimized YAG:Ce SCF is fully comparable with that of the YAG:Ce single crystal analogue.  相似文献   

15.
The five observed crystal field energy levels and EPR g factors g//and g for Ce3+-doped LiYF4 crystal are calculated together from a complete diagonalization (of energy matrix) method. In the method, the contributions to g factors of ground Kramers doublet from all the rest doublets within the ground and excited manifolds 2F5/2 and 2F7/2 are included. The calculated results show reasonable agreement with the experimental values. The calculations suggest that the crystal field parameter B20 > 0 in LiYF4: Ce3+ crystal. The opinion of the parameter B20 < 0 in the previous paper is not correct. Since this opinion is based on the calculation of g factors using a very simple method where only the contributions to g factors from the doublets within the ground manifold 2F5/2 are considered, it is suggested that this simple method is not effective in the calculation of g factors for 4f1 ions in crystals.  相似文献   

16.
Spectra of x-ray radiation-induced absorption of SrCl2−Ce crystals in the region of 340–830 nm under the effect of selective irradiation in the induced-absorption bands by both conventional and laser sources are investigated. It is established that irradiation of sufficient intensity causes irreversible photochemical transformations of PC, PC+, and Ce2+ color centers their destruction, and restoration of the transparency of the crystals. To whom correspondence should be addressed. I. Franko Lvov State University, 8, Kirill and Mefodii Str., Lvov, 290005, Ukraine. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 66, No. 5, pp. 666–668, September–October, 1999.  相似文献   

17.
The spectroscopic properties in UV-excitable range for the phosphors of Sr3La2(BO3)4:RE3+ (RE3+=Eu3+, Ce3+, Tb3+) were investigated. The phosphors were synthesized by conventional solid-state reactions. The photoluminescence (PL) spectra and commission international de I'Eclairage (CIE) coordinates of Sr3La2(BO3)4:RE3+ were investigated. The f-d transitions of Eu3+, Ce3+ and Tb3+ in the host lattices are assumed and corroborated. The PL and PL excitation (PLE) spectra indicate that the main emission wavelength of Sr3La2(BO3)4:Eu3+ is 611 nm, and Sr3La2(BO3)4:Ce3+ shows dominating emission peak at 425 nm, while Sr3La2(BO3)4:Tb3+ displays green emission at 487, 542, 582 and 620 nm. These phosphors were prepared by simple solid-state reaction at 1000 °C. There are lower reactive temperature and more convenient than commercial phosphors. The Sr3La2(BO3)4:Tb3+ applied to cold cathode fluorescent lamp was found to emit green light and have a major peak wavelength at around 542 nm. These phosphors may provide a new kind of luminescent materials under ultraviolet excitation.  相似文献   

18.
The paper is dedicated to investigation of the Mn2+ luminescence in Tb3Al5O12 (TbAG) garnet, as well as the processes of excitation energy transfer between host cations (Tb3+ ions) and activators (Mn2+ and Mn2+-Ce3+ pair ions) in single crystalline films of TbAG:Mn and TbAG:Mn,Ce garnets which can be considered as promising luminescent materials for conversion of LED's radiation. Due to the effective energy transfer between TbAG host and activator, Mn2+ ions in TbAG possess the bright orange luminescence in the bands peaked at 595 nm with a lifetime of 0.64 ms which are caused by the 4T16A1 radiative transitions. The simultaneous process of energy transfer is realized in TbAG:Mn,Ce: (i) from Tb3+ to Mn2+ ions; (ii) from Tb3+ cations to Ce3+ ions and then partly to Mn2+ ions through Tb3+ ion sublattice and Ce-Mn dipole-dipole interaction.  相似文献   

19.
Non-radiative energy transfers (ET) from Ce3+ to Pr3+ in Y3Al5O12:Ce3+, Pr3+ and from Sm3+ to Eu3+ in CaMoO4:Sm3+, Eu3+ are studied based on photoluminescence spectroscopy and fluorescence decay patterns. The result indicates an electric dipole-dipole interaction that governs ET in the LED phosphors. For Ce3+ concentration of 0.01 in YAG:Ce3+, Pr3+, the rate constant and critical distance are evaluated to be 4.5×10−36 cm6 s−1 and 0.81 nm, respectively. An increase in the red emission line of Pr3+ relative to the yellow emission band of Ce3+, on increasing Ce3+ concentration is observed. This behavior is attributed to the increase of spectral overlap integrals between Ce3+ emission and Pr3+ excitation due to the fact that the yellow band shifts to the red spectral side with increasing Ce3+ concentration. In CaMoO4:Sm3+, Eu3+, Sm3+-Eu3+ transfer occurs from 4G5/2 of Sm3+ to 5D0 of Eu3+. The rate constant of 8.5×10−40 cm6 s−1 and the critical transfer distance of 0.89 nm are evaluated.  相似文献   

20.
Information on the energy of 5d-levels of Ce3+ ions in aluminates and “simple” oxides has been collected. The crystal field splitting of the 5d-levels is interpreted in terms of the type and size of anion polyhedron coordinating the Ce3+ ion. The centroid (barycenter) shift of the 5d-configuration is analyzed by a ligand polarization model providing values for the spectroscopic polarizability αsp of the anion ligands. The data provide evidence that the centroid shift behaves independently from the crystal field splitting. By combining centroid shift and crystal field splitting, the “spectroscopic” redshift of the first electric dipole-allowed fd transition of Ce3+-doped in the compounds will be interpreted. The large crystal field splitting in garnet compounds and the small splitting in perovskite compounds will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号