首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Let \({\alpha}\) be a bounded linear operator in a Banach space \({\mathbb{X}}\), and let A be a closed operator in this space. Suppose that for \({\Phi_1, \Phi_2}\) mapping D(A) to another Banach space \({\mathbb{Y}}\), \({A_{|{\rm ker}\, \Phi_1}}\) and \({A_{|{\rm ker}\, \Phi_2}}\) are generators of strongly continuous semigroups in \({\mathbb{X}}\). Assume finally that \({A_{|{\rm ker}\, \Phi_\text{a}}}\), where \({\Phi_\text{a} = \Phi_1 \alpha + \Phi_2 \beta}\) and \({\beta = I_\mathbb{X} - \alpha}\), is a generator also. In the case where \({\mathbb{X}}\) is an L 1-type space, and \({\alpha}\) is an operator of multiplication by a function \({0 \le \alpha \le 1}\), it is tempting to think of the later semigroup as describing dynamics which, while at state x, is subject to the rules of \({A_{|{\rm ker}\, \Phi_1}}\) with probability \({\alpha (x)}\) and is subject to the rules of \({A_{|{\rm ker}\, \Phi_2}}\) with probability \({\beta (x)= 1 - \alpha (x)}\). We provide an approximation (a singular perturbation) of the semigroup generated by \({A_{|{\rm ker}\, \Phi_\text{a}}}\) by semigroups built from those generated by \({A_{|{\rm ker}\, \Phi_1}}\) and \({A_{|{\rm ker}\, \Phi_2}}\) that supports this intuition. This result is motivated by a model of dynamics of Solea solea (Arino et al. in SIAM J Appl Math 60(2):408–436, 1999–2000; Banasiak and Goswami in Discrete Continuous Dyn Syst Ser A 35(2):617–635, 2015; Banasiak et al. in J Evol Equ 11:121–154, 2011, Mediterr J Math 11(2):533–559, 2014; Banasiak and Lachowicz in Methods of small parameter in mathematical biology, Birkhäuser, 2014; Sanchez et al. in J Math Anal Appl 323:680–699, 2006) and is, in a sense, dual to those of Bobrowski (J Evol Equ 7(3):555–565, 2007), Bobrowski and Bogucki (Stud Math 189:287–300, 2008), where semigroups generated by convex combinations of Feller’s generators were studied.  相似文献   

2.
Permutation polynomials over finite fields have been studied extensively recently due to their wide applications in cryptography, coding theory, communication theory, among others. Recently, several authors have studied permutation trinomials of the form \(x^rh\left( x^{q-1}\right) \) over \({\mathbb F}_{q^2}\), where \(q=2^k\), \(h(x)=1+x^s+x^t\) and \(r, k>0, s, t\) are integers. Their methods are essentially usage of a multiplicative version of AGW Criterion because they all transformed the problem of proving permutation polynomials over \({\mathbb F}_{q^2}\) into that of showing the corresponding fractional polynomials permute a smaller set \(\mu _{q+1}\), where \(\mu _{q+1}:=\{x\in \mathbb {F}_{q^2} : x^{q+1}=1\}\). Motivated by these results, we characterize the permutation polynomials of the form \(x^rh\left( x^{q-1}\right) \) over \({\mathbb F}_{q^2}\) such that \(h(x)\in {\mathbb F}_q[x]\) is arbitrary and q is also an arbitrary prime power. Using AGW Criterion twice, one is multiplicative and the other is additive, we reduce the problem of proving permutation polynomials over \({\mathbb F}_{q^2}\) into that of showing permutations over a small subset S of a proper subfield \({\mathbb F}_{q}\), which is significantly different from previously known methods. In particular, we demonstrate our method by constructing many new explicit classes of permutation polynomials of the form \(x^rh\left( x^{q-1}\right) \) over \({\mathbb F}_{q^2}\). Moreover, we can explain most of the known permutation trinomials, which are in Ding et al. (SIAM J Discret Math 29:79–92, 2015), Gupta and Sharma (Finite Fields Appl 41:89–96, 2016), Li and Helleseth (Cryptogr Commun 9:693–705, 2017), Li et al. (New permutation trinomials constructed from fractional polynomials, arXiv: 1605.06216v1, 2016), Li et al. (Finite Fields Appl 43:69–85, 2017) and Zha et al. (Finite Fields Appl 45:43–52, 2017) over finite field with even characteristic.  相似文献   

3.
We consider the conditions under which a continuous function \({\varphi \colon {\mathbb{R}}^n \to \mathbb {R}}\) is the imaginary part \({\Im f}\) of the characteristic function f of a probability measure on \({{\mathbb{R}}^n}\). A similar problem about such an \({\varphi}\) that it is the argument of the characteristic function was solved by Ilinskii [Theory Probab. Appl. 20 (1975), 410–415]. In this paper, a characterization of what \({\varphi}\) might serve as the imaginary part of the characteristic function f is given. As a consequence, we provide an answer to the following question posed by N. G. Ushakov [7]: Is it true that f is never determined by its imaginary part \({\Im f}\) ? In other words, is it true that for any characteristic function f there exists a characteristic function g such that \({\Im f\equiv \Im g}\) but \({ f\not\equiv g}\) ? We prove that the answer to this question is negative. In addition, several examples of characteristic functions which are uniquely determined by their imaginary parts are given.  相似文献   

4.
Theorems due to Stenger (Bull Am Math Soc 74:369–372, 1968) and Nudelman (Int Equ Oper Theory 70:301–305, 2011) in Hilbert spaces and their generalizations to Krein spaces in Azizov and Dijksma (Int Equ Oper Theory 74(2):259–269, 2012) and Azizov et al. (Linear Algebra Appl 439:771–792, 2013) generate additional questions about properties a finite-codimensional compression \({T_0}\) of a symmetric or self-adjoint linear relation \({T}\) may or may not inherit from \({T}\). These questions concern existence of invariant maximal nonnegative subspaces, definitizability, singular critical points and defect indices.  相似文献   

5.
Let \(\Omega \subset {\mathbb R}\) be a compact set with measure 1. If there exists a subset \(\Lambda \subset {\mathbb R}\) such that the set of exponential functions \(E_{\Lambda }:=\{e_\lambda (x) = e^{2\pi i \lambda x}|_\Omega :\lambda \in \Lambda \}\) is an orthonormal basis for \(L^2(\Omega )\), then \(\Lambda \) is called a spectrum for the set \(\Omega \). A set \(\Omega \) is said to tile \({\mathbb R}\) if there exists a set \(\mathcal T\) such that \(\Omega + \mathcal T = {\mathbb R}\), the set \(\mathcal T\) is called a tiling set. A conjecture of Fuglede suggests that spectra and tiling sets are related. Lagarias and Wang (Invent Math 124(1–3):341–365, 1996) proved that tiling sets are always periodic and are rational. That any spectrum is also a periodic set was proved in Bose and Madan (J Funct Anal 260(1):308–325, 2011) and Iosevich and Kolountzakis (Anal PDE 6:819–827, 2013). In this paper, we give some partial results to support the rationality of the spectrum.  相似文献   

6.
In this article, using the heat kernel approach from Bouche (Asymptotic results for Hermitian line bundles over complex manifolds: The heat kernel approach, Higher-dimensional complex varieties, pp 67–81, de Gruyter, Berlin, 1996), we derive sup-norm bounds for cusp forms of integral and half-integral weight. Let \({\Gamma\subset \mathrm{PSL}_{2}(\mathbb{R})}\) be a cocompact Fuchsian subgroup of first kind. For \({k \in \frac{1}{2} \mathbb{Z}}\) (or \({k \in 2\mathbb{Z}}\)), let \({S^{k}_{\nu}(\Gamma)}\) denote the complex vector space of cusp forms of weight-k and nebentypus \({\nu^{2k}}\) (\({\nu^{k\slash 2}}\), if \({k \in 2\mathbb{Z}}\)) with respect to \({\Gamma}\), where \({\nu}\) is a unitary character. Let \({\lbrace f_{1},\ldots,f_{j_{k}} \rbrace}\) denote an orthonormal basis of \({S^{k}_{\nu}(\Gamma)}\). In this article, we show that as \({k \rightarrow \infty,}\) the sup-norm for \({\sum_{i=1}^{j_{k}}y^{k}|f_{i}(z)|^{2}}\) is bounded by O(k), where the implied constant is independent of \({\Gamma}\). Furthermore, using results from Berman (Math. Z. 248:325–344, 2004), we extend these results to the case when \({\Gamma}\) is cofinite.  相似文献   

7.
We obtain some new nonexistence results of generalized bent functions from \({\mathbb {Z}}^n_q\) to \({\mathbb {Z}}_q\) (called type [nq]) in the case that there exist cyclotomic integers in \( {\mathbb {Z}}[\zeta _{q}]\) with absolute value \(q^{\frac{n}{2}}\). This result generalizes two previous nonexistence results \([n,q]=[1,2\times 7]\) of Pei (Lect Notes Pure Appl Math 141:165–172, 1993) and \([3,2\times 23^e]\) of Jiang and Deng (Des Codes Cryptogr 75:375–385, 2015). We also remark that by using a same method one can get similar nonexistence results of GBFs from \({\mathbb {Z}}^n_2\) to \({\mathbb {Z}}_m\).  相似文献   

8.
The aim of this paper is to study the global determinism of the class \({\mathcal {A}}\) of all semigroups having regular globals. It is known from PeliKán (Periodica Math Hungarica 4:103–106, 1973) and Pondělí?ek (On semigroups having regular globals, 1976) that \({\mathcal {A}}\) can be divided into two subclasses: the class \({\mathcal {A}}_{2}\) of all semigroups having idempotent globals and the class \({\mathcal {A}}_{3}\) of all semigroups having regular but non-idempotent globals. We prove that \({\mathcal {A}}_{2}\) is globally determined and that \({\mathcal {A}}_{3}\) satisfies the strong isomorphism property. This shows that \({\mathcal {A}}\) is globally determined.  相似文献   

9.
Let \({\mathcal B}_{p,w}\) be the Banach algebra of all bounded linear operators acting on the weighted Lebesgue space \(L^p(\mathbb {R},w)\), where \(p\in (1,\infty )\) and w is a Muckenhoupt weight. We study the Banach subalgebra \(\mathfrak {A}_{p,w}\) of \({\mathcal B}_{p,w}\) generated by all multiplication operators aI (\(a\in \mathrm{PSO}^\diamond \)) and all convolution operators \(W^0(b)\) (\(b\in \mathrm{PSO}_{p,w}^\diamond \)), where \(\mathrm{PSO}^\diamond \subset L^\infty (\mathbb {R})\) and \(\mathrm{PSO}_{p,w}^\diamond \subset M_{p,w}\) are algebras of piecewise slowly oscillating functions that admit piecewise slowly oscillating discontinuities at arbitrary points of \(\mathbb {R}\cup \{\infty \}\), and \(M_{p,w}\) is the Banach algebra of Fourier multipliers on \(L^p(\mathbb {R},w)\). For any Muckenhoupt weight w, we study the Fredholmness in the Banach algebra \({\mathcal Z}_{p,w}\subset \mathfrak {A}_{p,w}\) generated by the operators \(aW^0(b)\) with slowly oscillating data \(a\in \mathrm{SO}^\diamond \) and \(b\in \mathrm{SO}^\diamond _{p,w}\). Then, under some condition on the weight w, we complete constructing a Fredholm symbol calculus for the Banach algebra \(\mathfrak {A}_{p,w}\) in comparison with Karlovich and Loreto Hernández (Integr. Equations Oper. Theory 74:377–415, 2012) and Karlovich and Loreto Hernández (Integr. Equations Oper. Theory 75:49–86, 2013) and establish a Fredholm criterion for the operators \(A\in \mathfrak {A}_{p,w}\) in terms of their symbols. A new approach to determine local spectra is found.  相似文献   

10.
This paper is a follow-up contribution to our work (Sarkar in J Oper Theory, 73:433–441, 2015) where we discussed some invariant subspace results for contractions on Hilbert spaces. Here we extend the results of (Sarkar in J Oper Theory, 73:433–441, 2015) to the context of n-tuples of bounded linear operators on Hilbert spaces. Let \(T = (T_1, \ldots , T_n)\) be a pure commuting co-spherically contractive n-tuple of operators on a Hilbert space \({\mathcal {H}}\) and \({\mathcal {S}}\) be a non-trivial closed subspace of \({\mathcal {H}}\). One of our main results states that: \({\mathcal {S}}\) is a joint T-invariant subspace if and only if there exists a partially isometric operator \(\Pi \in {\mathcal {B}}(H^2_n({\mathcal {E}}), {\mathcal {H}})\) such that \({\mathcal {S}}= \Pi H^2_n({\mathcal {E}})\), where \(H^2_n\) is the Drury–Arveson space and \({\mathcal {E}}\) is a coefficient Hilbert space and \(T_i \Pi = \Pi M_{z_i}\), \(i = 1, \ldots , n\). In particular, it follows that a shift invariant subspace of a “nice” reproducing kernel Hilbert space over the unit ball in \({{\mathbb {C}}}^n\) is the range of a “multiplier” with closed range. Our work addresses the case of joint shift invariant subspaces of the Hardy space and the weighted Bergman spaces over the unit ball in \({{\mathbb {C}}}^n\).  相似文献   

11.
For every finite measure \({\mu}\) on \({{\mathbb{R}}^n}\) we define a decomposability bundle \({V(\mu,\,\cdot)}\) related to the decompositions of \({\mu}\) in terms of rectifiable one-dimensional measures. We then show that every Lipschitz function on \({{\mathbb{R}}^n}\) is differentiable at \({\mu}\)-a.e. \({x}\) with respect to the subspace \({V(\mu,\,x)}\), and prove that this differentiability result is optimal, in the sense that, following (Alberti et al., Structure of null sets, differentiability of Lipschitz functions, and other problems, 2016), we can construct Lipschitz functions which are not differentiable at \({\mu}\)-a.e. \({x}\) in any direction which is not in \({V(\mu,\,x)}\). As a consequence we obtain a differentiability result for Lipschitz functions with respect to (measures associated to) \({k}\)-dimensional normal currents, which we use to extend certain basic formulas involving normal currents and maps of class \({C^1}\) to Lipschitz maps.  相似文献   

12.
Recently, the format of TT tensors (Hackbusch and Kühn in J Fourier Anal Appl 15:706–722, 2009; Oseledets in SIAM J Sci Comput 2009, submitted; Oseledets and Tyrtyshnikov in SIAM J Sci Comput 31:5, 2009; Oseledets and Tyrtyshnikov in Linear Algebra Appl 2009, submitted) has turned out to be a promising new format for the approximation of solutions of high dimensional problems. In this paper, we prove some new results for the TT representation of a tensor \({U \in \mathbb{R}^{n_1\times \cdots\times n_d}}\) and for the manifold of tensors of TT-rank \({\underline{r}}\) . As a first result, we prove that the TT (or compression) ranks r i of a tensor U are unique and equal to the respective separation ranks of U if the components of the TT decomposition are required to fulfil a certain maximal rank condition. We then show that the set \({\mathbb{T}}\) of TT tensors of fixed rank \({\underline{r}}\) locally forms an embedded manifold in \({\mathbb{R}^{n_1\times\cdots\times n_d}}\) , therefore preserving the essential theoretical properties of the Tucker format, but often showing an improved scaling behaviour. Extending a similar approach for matrices (Conte and Lubich in M2AN 44:759, 2010), we introduce certain gauge conditions to obtain a unique representation of the tangent space \({\mathcal{T}_U\mathbb{T}}\) of \({\mathbb{T}}\) and deduce a local parametrization of the TT manifold. The parametrisation of \({\mathcal{T}_{U}\mathbb{T}}\) is often crucial for an algorithmic treatment of high-dimensional time-dependent PDEs and minimisation problems (Lubich in From quantum to classical molecular dynamics: reduced methods and numerical analysis, 2008). We conclude with remarks on those applications and present some numerical examples.  相似文献   

13.
Let \({\Sigma_r}\) be the symmetric group acting on \({r}\) letters, \({K}\) be a field of characteristic 2, and \({\lambda}\) and \({\mu}\) be partitions of \({r}\) in at most two parts. Denote the permutation module corresponding to the Young subgroup \({\Sigma_\lambda}\), in \({\Sigma_r}\), by \({M^\lambda}\), and the indecomposable Young module by \({Y^\mu}\). We give an explicit presentation of the endomorphism algebra \({{\rm End}_{k[\Sigma_r]}(Y^\mu)}\) using the idempotents found by Doty et al. (J Algebra 307(1):377–396, 2007).  相似文献   

14.
We show that if \({f\colon X\to Y}\) is a quasisymmetric mapping between Ahlfors regular spaces, then \({dim_H f(E)\leq dim_H E}\) for “almost every” bounded Ahlfors regular set \({E\subseteq X}\). If additionally, \({X}\) and \({Y}\) are Loewner spaces then \({dim_H f(E)=dim_H E}\) for “almost every" Ahlfors regular set \({E\subset X}\). The precise statements of these results are given in terms of Fuglede’s modulus of measures. As a corollary of these general theorems we show that if \({f}\) is a quasiconformal map of \({\mathbb{R}^N}\), \({N\geq 2}\), then for Lebesgue a.e. \({y\in\mathbb{R}^N}\) we have \({dim_H f(y+E) = dim_H E}\). A similar result holds for Carnot groups as well. For planar quasiconformal maps, our general estimates imply that if \({E \subset {\mathbb{R}}}\) is Ahlfors \({d}\)-regular, \({d < 1}\), then some component of \({f(E \times {\mathbb{R}})}\) has dimension at most \({2/(d+1)}\), and we construct examples to show this bound is sharp. In addition, we show there is a \({1}\)-dimensional set \({S\subseteq \mathbb R}\) and planar quasiconformal map \({f}\) such that \({f({\mathbb{R}} \times S)}\) contains no rectifiable sub-arcs. These results generalize work of Balogh et al. (J Math Pures Appl (2)99:125–149, 2013) and answer questions posed in Balogh et al. (J Math Pures Appl (2)99:125–149, 2013) and Capogna et al. (Mapping theory in metric spaces. http://aimpl.org/mappingmetric, 2016).  相似文献   

15.
This paper deals with the existence of time-periodic solutions to the compressible Navier–Stokes equations effected by general form external force in \({\mathbb{R}^{N}}\) with \({N = 4}\). Using a fixed point method, we establish the existence and uniqueness of time-periodic solutions. This paper extends Ma, UKai, Yang’s result [5], in which, the existence is obtained when the space dimension \({N \ge 5}\).  相似文献   

16.
Gradient Ricci solitons and metrics with half harmonic Weyl curvature are two natural generalizations of Einstein metrics on four-manifolds. In this paper we prove that if a metric has structures of both gradient shrinking Ricci soliton and half harmonic Weyl curvature, then except for three examples, it has to be an Einstein metric with positive scalar curvature. Precisely, we prove that a four-dimensional gradient shrinking Ricci soliton with \(\delta W^{\pm }=0\) is either Einstein, or a finite quotient of \(S^3\times \mathbb {R}\), \(S^2\times \mathbb {R}^2\) or \(\mathbb {R}^4\). We also prove that a four-dimensional gradient Ricci soliton with constant scalar curvature is either Kähler–Einstein, or a finite quotient of \(M\times \mathbb {C}\), where M is a Riemann surface. The method of our proof is to construct a weighted subharmonic function using curvature decompositions and the Weitzenböck formula for half Weyl curvature, and the method was motivated by previous work (Gursky and LeBrun in Ann Glob Anal Geom 17:315–328, 1999; Wu in Einstein four-manifolds of three-nonnegative curvature operator 2013; Trans Am Math Soc 369:1079–1096, 2017; Yang in Invent Math 142:435–450, 2000) on the rigidity of Einstein four-manifolds with positive sectional curvature, and previous work (Cao and Chen in Trans Am Math Soc 364:2377–2391, 2012; Duke Math J 162:1003–1204, 2013; Catino in Math Ann 35:629–635, 2013) on the rigidity of gradient Ricci solitons.  相似文献   

17.
In this paper, we deal with Bernstein-type operators defined by Cárdenas-Morales et al. as \({B_{n}(f \circ \tau^{-1}) \circ \tau}\), where \({B_{n}}\) is the nth Bernstein polynomial (Comput Math Appl 62(1):158–163, 2011). Assuming that \({\tau}\) and f are absolutely continuous functions on \({[0, 1]}\) and inf \({\tau ^{\prime} (x) \geq m > 0}\) as well as \({\tau (0) = 0}\) and \({\tau (1) = 1,}\) we study the convergence of Bernstein-type operators to f in variation seminorm. Moreover, we give a Voronovskaja-type formula and a Jackson-type estimate in the sense of Bardaro et al. (Analysis 23:299–340, 2003).  相似文献   

18.
Let \({\varphi}\) be a Musielak–Orlicz function satisfying that, for any \({(x,\,t)\in{\mathbb R}^n \times [0, \infty)}\), \({\varphi(\cdot,\,t)}\) belongs to the Muckenhoupt weight class \({A_\infty({\mathbb R}^n)}\) with the critical weight exponent \({q(\varphi) \in [1,\,\infty)}\) and \({\varphi(x,\,\cdot)}\) is an Orlicz function with uniformly lower type \({p^{-}_{\varphi}}\) and uniformly upper type \({p^+_\varphi}\) satisfying \({q(\varphi) < p^{-}_{\varphi}\le p^{+}_{\varphi} < \infty}\). In this paper, the author obtains a sharp weighted bound involving \({A_\infty}\) constant for the Hardy–Littlewood maximal operator on the Musielak–Orlicz space \({L^{\varphi}}\). This result recovers the known sharp weighted estimate established by Hytönen et al. in [J. Funct. Anal. 263:3883–3899, 2012].  相似文献   

19.
In this short note we study a nonexistence result of biharmonic maps from a complete Riemannian manifold into a Riemannian manifold with nonpositive sectional curvature. Assume that \({\phi : (M, g) \to (N, h)}\) is a biharmonic map, where (M, g) is a complete Riemannian manifold and (N, h) a Riemannian manifold with nonpositive sectional curvature, we will prove that \({\phi}\) is a harmonic map if one of the following conditions holds: (i) \({|d\phi|}\) is bounded in Lq(M) and \({\int_{M}|\tau(\phi)|^{p}dv_{g} < \infty}\), for some \({1 \leq q \leq \infty}\), \({1 < p < \infty}\); or (ii) \({Vol(M) = \infty}\) and \({\int_{M}|\tau(\phi)|^{p}dv_{g} < \infty}\), for some \({1 < p < \infty}\). In addition, if N has strictly negative sectional curvature, we assume that \({rank\phi(q) \geq 2}\) for some \({q \in M}\) and \({\int_{M}|\tau(\phi)|^{p}dv_{g} < \infty}\), for some \({1 < p < \infty}\). These results improve the related theorems due to Baird et al. (cf. Ann Golb Anal Geom 34:403–414, 2008), Nakauchi et al. (cf. Geom. Dedicata 164:263–272, 2014), Maeta (cf. Ann Glob Anal Geom 46:75–85, 2014), and Luo (cf. J Geom Anal 25:2436–2449, 2015).  相似文献   

20.
We consider a system of N bosons confined to a thin waveguide, i.e. to a region of space within an \({\epsilon}\)-tube around a curve in \({\mathbb{R}^3}\). We show that when taking simultaneously the NLS limit \({N \to \infty}\) and the limit of strong confinement \({\epsilon \to 0}\), the time-evolution of such a system starting in a state close to a Bose–Einstein condensate is approximately captured by a non-linear Schrödinger equation in one dimension. The strength of the non-linearity in this Gross–Pitaevskii type equation depends on the shape of the cross-section of the waveguide, while the “bending” and the “twisting” of the waveguide contribute potential terms. Our analysis is based on an approach to mean-field limits developed by Pickl (On the time-dependent Gross–Pitaevskii-and Hartree equation. arXiv:0808.1178, 2008).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号