首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Poly (vinyl alcohol)/poly (ethylene oxide) (PEO/PVA) blends were modified by gamma irradiation in the presence of acrylic acid (AAc) monomer. The modified PVA/PEO blends were then complexed with silver nitrate salt and lithium trifluoromethanesulfonate. Transmission electron microscopy was used to determine the distribution as well as the particle size of the silver nanoparticles (NP) formed in the matrix. The UV–vis absorbance spectra of the prepared grafted nanocomposite membranes confirmed the formation of Ag NP based on their surface plasmon band at 438?nm. The electrical properties of the blended electrolyte polymer films were characterized and discussed.  相似文献   

2.
The nanocomposite films of a functionalized graphene sheet (FGS) and poly(ethylene oxide) (PEO) were cast from the physical blend of an aqueous FGS dispersion assisted by sodium dodecyl sulfate and an aqueous PEO solution. The thermal properties observed by differential scanning calorimetry suggested that FGS had a nucleating effect on the PEO crystallization. However, we found FGS actually hindered the growth of PEO crystals. The dynamic mechanical properties indicated that FGS effectively reinforced the matrix PEO. The FGS also efficiently improved the electric conductivity of PEO. With the addition of 2 parts of FGS per 100 parts of PEO, the conductivity was increased by more than 103-fold from that of pristine PEO.  相似文献   

3.
This work concerning the photophysical properties of fluorescent nanohybrid films based on poly(methylmethacrylate) (PMMA) doped with coumarin dyestuff and entrapped with different concentrations of hydrophilic nanosilica. Spectroscopic tools were applied in order to determine the optimum concentration of nanosilica for the best optical properties for a matrix used as fluorescent solar concentrator. The optical constants and photoluminescence spectra of fluorescent nanohybrid films showed an enhancement of the photon trapping efficiency and matrix stability by increasing the concentration of SiO2 nanoparticles.  相似文献   

4.
The optical characterization of poly (ethylene oxide)/zinc oxide thin films has been done by analyzing the absorption spectra in the spectral wavelength region 380–800 nm using a ultraviolet-spectrophotometer at room temperature. Thin film polymer composites made of poly (ethylene oxide) (PEO) containing zinc oxide (ZnO) filler concentrations (0%, 2%, 6%, 10%, and 14%) by weight were used in this study. The optical results obtained were analyzed in terms of the absorption formula for non-crystalline materials. The optical energy gap and other basic optical constants such as dielectric constants and optical conductivity were investigated and showed a clear dependence on the ZnO filler concentration. It was found that the optical energy gap for the composite films is less than that for the neat PEO, and that it decreases as the ZnO concentration increases. Enhancement of the optical conductivity was observed with increase in the ZnO concentration. Dispersion of refractive index was analyzed using the Wemple–DiDomenico single oscillator model. The refractive index (n), extinction coefficient (k), and dispersion parameters (Eo, Ed) were calculated for the investigated films.  相似文献   

5.
Blends of poly (ethylene oxide)‐b‐polystyrene (PEO‐b‐PS) diblock copolymer and poly (2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) homopolymer were obtained by solution blending, and the morphologies of PEO dispersed nanoparticles in PPO/PS matrix were observed by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The isothermal crystallization kinetics was studied using differential scanning calorimetry (DSC) and polarized optical microscopy (POM). Nonisothermal crystallization kinetics was studied using DSC. The results showed that PEO segments were easier to crystallize in the blend than in the copolymer probably due to the interfaces of PPO acting as nucleation sites to promote the crystallization of PEO. The crystallization of PEO blocks destroyed the pre‐existing microdomain structure even though the glass transition temperature of the matrix was much higher than the crystallization temperature.  相似文献   

6.
A simple route for fabricating highly ordered luminescent thin films based on hybrid material of diblock copolymer and europium complex, assisted with self-organization of polystyrene-block-poly(ethylene oxide) (PS-b-PEO) diblock copolymer upon solvent annealing, is presented. PS-b-PEO self-organized into hexagonal patterns and europium complex of Eu(BA)3Phen was selectively embedded in PS blocks after solvent annealing in benzene or benzene/water vapor. During benzene annealing, the orientation of the PEO cylindrical domains strongly depended on the Eu(BA)3Phen concentration. In contrast, when the hybrid thin films were annealed in mixture of benzene and water vapor, high degree of orientation of the PEO cylindrical domains is more easily obtained, which is independent of Eu(BA)3Phen concentration. Furthermore, preferential interaction of PEO domains with water induces a generation of nanopores in the hybrid thin film. Atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to characterize the long-range lateral order and phase composition of the hybrid thin films. The ordered nanohybrid thin films kept the fluorescence property of Eu(BA)3Phen and showed a strong red emission under the 254 nm light's irradiation. The fluorescence property was confirmed by photoluminescence (PL) spectra.  相似文献   

7.
A series of poly(vinyl alcohol)/nano-ZnO composites were prepared by dispersing nano-ZnO in aqueous solutions containing mixtures of the biodegradable polymers poly(vinyl alcohol) (PVA) and poly(ethylene oxide) (PEO), and composite thin films were prepared by casting. The introduction of nano-ZnO into PVA/PEO mixed solutions significantly decreased the resistivity of the solutions. Ultraviolet absorption, thermal behaviour and visco-elastic properties of the thin films were determined as a function of nano-ZnO content up to 15 wt%. Optimum film properties were obtained with 1 wt% nano-ZnO, higher proportions of nano-ZnO resulting in agglomeration of ZnO particles and deterioration in film properties. The Forouhi and Bloomer model was used for the modelling of ZnO thin films.  相似文献   

8.
Measurements of electrical conductivity and thermal behaviour have been carried out on polymer electrolyte films obtained by the addition of erbium triflate to poly(ethylene oxide), PEO. Homogeneous electrolyte samples were prepared by using solvent casting and hot-pressing techniques to produce films with a composition defined by the general formula (EO)nEr(CF3SO3)3, where n lies between 3 and 150. This electrolyte system was found to behave in a manner broadly similar to other trivalent salt containing polymer electrolytes, however, in contrast to previously studied lanthanide systems, a salt - polymer complex crystallized after prolonged annealing of salt rich compositions at room temperature. Paper presented at the 2nd Euroconference on Solid State Ionics, Funchal, Madeira, Portugal, Sept. 10 – 16, 1995  相似文献   

9.
A new series of blended polymer electrolytes based on a boroxine polymer (BP) with poly(ethylene oxide) (PEO), an ethylene oxide–propylene oxide copolymer or poly(methyl methacrylate) were prepared. Good room temperature mechanical properties were exhibited by electrolytes containing in excess of 30% PEO. Cationic transference number measurements indicated that a slight improvement in lithium ion conductivity could be achieved by using a mixture of LiCF3SO3 and LiN(CF3SO2)2 as the electrolyte salt. Electrolytes incorporating significant proportions of BP exhibited reduced lithium–polymer electrolyte interfacial resistance.  相似文献   

10.
The star macromolecules (SM) were synthesized from phloroglucinol, phosphorus oxychloride, and poly(ethylene glycol methyl ether) with different molecular weight. Structures of the products were characterized by Fourier transform infrared and 1H-nuclear magnetic resonance. Solid polymer electrolyte films were prepared by mixing the products with poly(ethylene oxide) (PEO) and LiClO4. The polymer blends of PEO and SM have been characterized by differential scanning calorimetry and thermogravimetry, and the polymer electrolytes have been characterized by alternating current impedance. All the SM products could improve the conductivities of the polymer electrolyte obviously at a temperature range from 20 °C to 80 °C.  相似文献   

11.
Crystallization of poly(ethylene oxide) (PEO) in thin films was studied using hot-stage polarized optical microscopy. Isothermal linear crystal growth rates were measured for various film thicknesses at various degrees of undercooling. At a given crystallization temperature, the linear crystal growth rate decreased exponentially with decreasing film thickness below a film thickness of 80 nm. Films showed similar spherulitic morphology down to a film thickness of 30 nm. Control experiments on hydrophilic and hydrophobic surfaces showed that surface chemistry affects stability of the polymer films and causes a competition between crystallization and dewetting.  相似文献   

12.
The effects of colloidal-gold layers on the luminescent properties of thin films of Eu(TTFA)3(TTFA=thenoyltrifluoroacetonate) in PMMA (PMMA=poly(methyl methacrylate)) were investigated. Layers of spherical gold nanoparticles (12 nm) were formed by self-assembly on the surface of amino-derivatized glass slides. Eu(TTFA)3-PMMA films were then spin-coated either directly onto the Au metal surfaces or onto spacer layers covering the gold. The luminescence properties were characterized both as a function of the density of Au particles in the colloidal layer, and as a function of the distance between the Au layer and the luminescent film. The distance between the metal and luminescent layers was controlled using polyelectrolyte spacer layers deposited on the colloidal-gold films by a spin-assisted, layer-by-layer (SA-LBL) method. It was found that the colloidal gold layer has a net quenching effect on Eu(TTFA)3 luminescence under all conditions considered in this study. The luminescence intensities and lifetimes decrease with increasing density of Au nanoparticles and with decreasing separation (d) between the luminescent film and the gold layer. The measured luminescence intensity drops more quickly with decreasing distance than one would predict based solely on lifetime data, if one assumes a constant radiative relaxation rate. Fits of the luminescence decay kinetics to a model for non-radiative energy-transfer from Eu(TTFA)3 to the gold layer yields a 1/d2 dependence, where d is the distance from the gold layer to the nearest face of the luminescent film. It is suggested that there is no reasonable physical interpretation of this result within the constraints of the model and, therefore, the interaction between the luminescent and gold layer cannot be explained solely in terms of non-radiative energy transfer.  相似文献   

13.
Hybrid nanofilms from zinc-peroxide/poly(acrylamide) (ZnO2/PAAm) and zinc-peroxide/poly(N-isopropyl-acrylamide) (ZnO2/PNIPAAm) were prepared using the photopolymerization procedure. The thin layers were prepared by the combination of the Layer-by-Layer (LbL) self-assembly method and photopolymerization using UV light in every step of the procedure. The hybrid multilayer films consisting of layers of zinc peroxide nanoparticles and hydrogel alternating in a sandwich-like fashion with thicknesses of 65-246 nm. The chemical structures of the hybrid films were investigated by FTIR spectroscopy, their morphology was studied by atomic force microscopy (AFM). The build up of the films was studied by measuring the optical reflection spectrum, and we have calculated the refractive index and layer thickness of the hybrid layers using simulating software. The adsorption properties of the ZnO2/hydrogel nanohybrid composite networks were investigated by measuring water and ethanol vapour adsorption by a quartz crystal microbalance (QCM). It was established that on partially hydrophobic ZnO2/PNIPAAm hybrids the adsorbed amounts were lower, against the hydrophilic ZnO2/PAAm film the vapour amount was higher. These results correspond to those of the bulk gel swelling results.  相似文献   

14.
Polymer nanocomposite electrolytes (PNCEs) of poly(ethylene oxide) and sodium perchlorate monohydrate complexes with montmorillonite (MMT) clay up to 20 wt.% MMT concentration of poly(ethylene oxide) (PEO) are synthesized by melt compounding technique at melting temperature of PEO (∼70 °C) and NaClO4 monohydrate (∼140 °C). Complex dielectric function, electric modulus, alternating current (ac) electrical conductivity, and impedance properties of these PNCEs films are investigated in the frequency range 20 Hz to 1 MHz at ambient temperature. The direct current conductivity of these materials was determined by fitting the frequency-dependent ac conductivity spectra to the Jonscher power law. The PNCEs films synthesized at melting temperature of NaClO4 monohydrate have conductivity values lower than that of synthesized at PEO melting temperature. The complex impedance plane plots of these PNCEs films have a semicircular arc in upper frequency region corresponding to the bulk material properties and are followed by a spike in the lower frequency range owing to the electrode polarization phenomena. Relaxation times of electrode polarization and ionic conduction relaxation processes are determined from the frequency values corresponding to peaks in loss tangent and electric modulus loss spectra, respectively. A correlation is observed between the ionic conductivity and dielectric relaxation processes in the investigated PNCEs materials of varying MMT clay concentration. The scaled ac conductivity spectra of these PNCEs materials also obey the ac universality law.  相似文献   

15.
Because highly luminescent lanthanide compounds are limited to Eu3+ and Tb3+ compounds with red (Eu, ~615 nm) and green (Tb, ~545 nm) emission colors, the development and application of time-resolved luminescence bioassay technique using lanthanide-based multicolor luminescent biolabels have rarely been investigated. In this work, a series of lanthanide complexes covalently bound silica nanoparticles with an excitation maximum wavelength at 335 nm and red, orange, yellow and green emission colors has been prepared by co-binding different molar ratios of luminescent Eu3+–Tb3+ complexes with a ligand N,N,N1,N1-(4′-phenyl-2,2′:6′,2′′-terpyridine-6,6′′-diyl)bis(methylenenitrilo) tetrakis (acetic acid) inside the silica nanoparticles. The nanoparticles characterized by transmission electron microscopy and luminescence spectroscopy methods were used for streptavidin labeling, and time-resolved fluoroimmunoassay (TR-FIA) of human prostate-specific antigen (PSA) as well as time-resolved luminescence imaging detection of an environmental pathogen, Giardia lamblia. The results demonstrated the utility of the new multicolor luminescent lanthanide nanoparticles for time-resolved luminescence bioassays.  相似文献   

16.
Poly (ethylene oxide) (PEO)/polyvinylpyrrolidone (PVP) blended nanocomposite polymers, incorporating graphene oxide (GO) nano-sheets and embedded with NaIO4 salt, were prepared using solution casting technique. The as-prepared nanocomposite electrolyte membranes were characterized by SEM, TEM, XRD, and Raman vibrational spectroscopic techniques to confirm the dispersion of GO nano-sheets and to understand the synergistic properties of GO/polymer interactions as a function of GO nano-sheets concentration. GO fillers incorporated electrolyte membranes demonstrated distinctive surface morphology composed of circular-shaped protuberances of different dimensions. The decrease of Raman intensity ratio (ID/IG) and in-plane crystallite size (La) values of the nanocomposites suggested the good dispersion and confinement of the GO nano-sheets. The optical properties of blend electrolyte films were studied as a function of GO filler concentration using optical absorption and diffuse reflectance spectra. In reference to PEO/PVP/NaIO4, the resultant PEO/PVP/NaIO4/GO (0.4% in weight) electrolyte membrane demonstrated both an increase in tensile strength of ca. 42% and in Young’s modulus of ca. 40%, improvements coupled with a maximum fractured elongation of 3%. Through impedance spectroscopy analysis, the role of the GO nano-sheets onto the room temperature conductivity properties of the prepared electrolyte membranes has been probed.  相似文献   

17.
Poly(methylmetacrylate)/poly(ethylene oxide) (PMMA/PEO) based polymer electrolytes were synthesized using the solution cast technique. Four systems of PMMA/PEO blends based polymer electrolytes films were investigated:
  1. PMMA/PEO system,
  2. PMMA/PEO + ethylene carbonate (EC) system,
  3. PMMA/PEO + lithium hexafluorophosphate (LiPF6) system and
  4. PMMA/PEO + EC + LiPF6 system.
The polymer electrolytes films were characterized by Impedance Spectroscopy and Fourier Transform Infrared Spectroscopy (FTIR). The FTIR spectra show the complexation occurring between the polymers, plasticizer and lithium salt. The FTIR results give further insight in the conductivity enhancement of PMMA/PEO blends based polymer electrolytes.  相似文献   

18.
Pure and SmCl3(H2O)6 doped poly(ethylene oxide) (PEO) samples were prepared using a solvent casting method. These samples were characterized using Fourier transform infrared (FTIR), X-ray diffraction (XRD), and differential scanning colorimetry (DSC) techniques. The FTIR spectra indicate that, only at low dopant concentrations, the interactions between Sm3+ and ether oxygen atoms in PEO are dominant. As the dopant concentration increases, these interactions result in the formation of dopant aggregates or agglomerates leading to a phase separation into a polymer-rich phase and a dopant-rich phase in the films, which have been confirmed by XRD and DSC results.  相似文献   

19.
M. Sundar  S. Selladurai 《Ionics》2006,12(4-5):281-286
A solid polymer electrolyte (SPE) film consisting of poly(ethylene oxide) (PEO) with magnesium chloride as electrolytic salt and B2O3 as the filler has been prepared by solution casting technique. The polymeric film was flexible and self-standing with proper mechanical strength and studied for application in a solid-state rechargeable magnesium battery. The interactions between the filler and PEO chains are studied by differential scanning calorimeter and Fourier transform infrared techniques. Composition of SPE is optimized, and maximum conductivity is obtained at 2 wt% B2O3. Filler seems to increase the number of free magnesium cations by decoordinating the bond between magnesium cations and ether oxygen of PEO. Cyclic voltammetry results show the reversible capability of magnesium electrode. Solid-state magnesium cell employing magnesium anode, SPE, and manganese oxide was assembled, and its open circuit voltage is found to be 1.9 V.  相似文献   

20.
We have investigated the luminescence, luminescence excitation, and transmittance of europium- and terbium-doped xerogel films formed on smooth, nanotextured surfaces and in the pores of anodic aluminum oxide. Some factors responsible for enhancement of luminescence in the structure lanthanide-doped xerogel/mesoporous anodic aluminum oxide have been analyzed. It is assumed that the optical excitation of lanthanide ions can be realized directly, through a xerogel matrix, and due to the multiple scattering of exciting radiation by the matrix of mesoporous anodic aluminum oxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号