共查询到20条相似文献,搜索用时 15 毫秒
1.
This is a report on the synthesis, characterization and spectroscopic study of 24 lanthanide-crown ether coordination compounds, where Eu(III), Tb(III) and Gd(III) were complexes to 12-crown-4 (12C4), 15-crown-5 (15C5), 1,10-phenanthroline (phen) and 2,2′-dipyridyl (dipy). The compounds were synthesized in an ethanol/acetone solution at room temperature and analyzed using CHN elemental analysis and infrared, absorption and emission spectroscopies. The polarizability that the ligand exerts on the emission process was verified and found remarkable. The Eu-15C5-phen complex showed the highest quantum efficiency (71.6%) because of its low non-radiative rate and highest polarizability with reference to the ligands system. 相似文献
2.
Solid complexes of lanthanide nitrates with a new unsymmetrical tripodal ligand, bis[(2′-benzylaminoformyl)phenoxyl)ethyl](ethyl)amine (L) have been synthesized and characterized by elemental analysis, infrared spectra and molar conductivity measurements. At the same time, the luminescent properties of the Sm(III), Eu(III), Tb(III) and Dy(III) nitrate complexes in solid state were also investigated. Under the excitation of UV light, these complexes exhibited characteristic emission of central metal ions. 相似文献
3.
A blue emitting phosphor of the triclinic BaCa2Si3O9:Eu2+ was prepared by the combustion-assisted synthesis method and an efficient blue emission ranging from the ultraviolet to visible was observed. The luminescence and crystallinity were investigated using luminescence spectrometry and X-ray diffractometry (XRD), respectively. The emission spectrum shows a single intensive band centered at 445 nm, which corresponds to the 4f65d1→4f7 transition of Eu2+. The excitation spectrum is a broad extending from 260 to 450 nm, which matches the emission of ultraviolet light-emitting diodes (UV-LEDs). The critical quenching concentration of Eu2+ in BaCa2Si3O9:Eu2+ phosphor is about 0.05 mol. The corresponding concentration quenching mechanism is verified to be a dipole-dipole interaction. The CIE of the optimized sample Ba0.95Ca2Si3O9:Eu0.052+ was (x, y)=(0.164, 0.111). The result indicates that BaCa2Si3O9:Eu2+ can be potentially useful as a UV radiation-converting phosphor for white light-emitting diodes (LEDs). 相似文献
4.
The monoclinic Ba2ZnSi2O7:Eu2+ blue-green-emitting phosphor and the orthorhombic BaZn2Si2O7:Eu2+ green-emitting phosphor were prepared by combustion-assisted synthesis method as the fluorescent materials for ultraviolet-light-emitting diodes (UV-LEDs) performed as a light source. The crystallinity and luminescence were investigated using X-ray diffraction (XRD) and photoluminescence (PL) spectroscopy. Pure monoclinic Ba2ZnSi2O7 and orthorhombic BaZn2Si2O7 crystallize completely at 1100 °C. The doped Eu2+ ions did not cause any significant change in the host structure. The emission spectra presented an emission position red shift of up to 16 nm from Ba2ZnSi2O7:Eu2+ to BaZn2Si2O7:Eu2+. The excitation spectra of Ba2ZnSi2O7:Eu2+ and BaZn2Si2O7:Eu2+ were broad-banding, extending from 260 to 465 nm, which match the emission of UV-LEDs. 相似文献
5.
Meryem Goumri Christophe Poilâne Pierre Ruterana Bessem Ben Doudou Jany Wéry Anass Bakour Mimouna Baitoul 《Chinese Journal of Physics (Taipei)》2017,55(2):412-422
Graphene oxide (GO) and reduced graphene oxide (CRGO), as a graphene derivatives, possess unique properties and a high aspect ratio, indicating great potential in nanocomposite fields. The present work reports the fabrication of the nanocomposite films by a simple and environmentally friendly process using aqueous solution and optimized time sonication for better exfoliation of the graphene sheets within Poly(Vinyl alcohol) (PVA) as matrix. The films were characterized using high-resolution TEM (HRTEM), X-ray diffraction (XRD), Microtensile testing, Differential scanning calorimetry (DSC) and Thermogravimetric analysis (TGA). The TEM images revealed a successfully exfoliation of the GO/CRGO nanosheets. XRD combined with TGA and DSC measurements showed an improvement in the thermal stability and tunable thermal properties. In addition, the Young's modulus and tensile yield strength of the composite films containing 1 wt% GO were obtained to be 4.92 GPa and 66 MPa respectively. These excellent reinforcement effects were achieved by the strong interaction between the components. 相似文献
6.
Synthesis and characterization of CdS/PVA nanocomposite films 总被引:1,自引:0,他引:1
A series CdS/PVA nanocomposite films with different amount of Cd salt have been prepared by means of the in situ synthesis method via the reaction of Cd2+-dispersed poly vinyl-alcohol (PVA) with H2S. The as-prepared films were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption, photoluminescence (PL) spectra, Fourier transform infrared spectroscope (FTIR) and thermogravimetric analysis (TGA). The XRD results indicated the formation of CdS nanoparticles with hexagonal phase in the PVA matrix. The primary FTIR spectra of CdS/PVA nanocomposite in different processing stages have been discussed. The vibrational absorption peak of CdS bond at 405 cm−1 was observed, which further testified the generation of CdS nanoparticles. The TGA results showed incorporation of CdS nanoparticles significantly altered the thermal properties of PVA matrix. The photoluminescence and UV-vis spectroscopy revealed that the CdS/PVA films showed quantum confinement effect. 相似文献
7.
Two new polyacid derivative ligands of thienyl-substituted terpyridine analogues, N,N,N1,N1-[4′-(2?-thienyl)-2,2′:6′,2″-terpyridine-6,6″-diyl]bis(methylenenitrilo) tetrakis(acetic acid) (TTTA) and N,N,N1,N1-[2,6-bis(3′-aminomethyl-1′-pyrazolyl)-4-(2″-thienyl)pyridine] tetrakis(acetic acid) (BTTA), were synthesized, and the luminescence properties of their Eu3+ and Tb3+ chelates were investigated. The Eu3+chelates of the two ligands are strongly luminescent having luminescence quantum yields of 0.150 (TTTA-Eu3+) and 0.114 (BTTA-Eu3+), and lifetimes of 1.284 ms (TTTA-Eu3+) and 1.352 ms (BTTA-Eu3+), whereas their Tb3+ chelates are weakly luminescent. The TTTA-Eu3+ chelate was used for streptavidin (SA) labeling, and the labeled SA was used for time-resolved fluoroimmunoassay of insulin in human sera. The method gives the detection limits of 33 pg ml−1. 相似文献
8.
M.M. Uplane 《Applied Surface Science》2007,253(24):9365-9371
Nickel oxide thin films were grown onto FTO-coated glass substrates by a two-step process: electrodeposition of nickel sulphide and their thermal oxidation at 425, 475 and 525 °C. The influence of thermal oxidation temperature on structural, optical, morphological and electrochromic properties was studied. The structural properties undoubtedly revealed NiO formation. The electrochromic properties were studied by means of cyclic voltammetry. The films exhibited anodic electrochromism, changing from a transparent state to a coloured state at +0.75 V versus SCE, i.e. by simultaneous ion and electron ejection. The transmittance in the coloured and bleached states was recorded to access electrochromic quality of the films. Colouration efficiency and electrochromic reversibility were found to be maximum (21 mC/cm2 and 89%, respectively) for the films oxidized at 425 °C. The optical band gap energy of nickel oxide slightly varies with increase in annealing temperature. 相似文献
9.
H. S. Zhou I. Honma Joseph W. Haus H. Sasabe H. Komiyama 《Journal of luminescence》1996,70(1-6):21-34
The synthesis of coated nanoparticles is a new direction in engineering, specifically in the study of physical properties of materials. We examine semiconductor coated semiconductor particles, CdS/PbS, and metal coated particles, Au2S/Au, and the theoretical basis for their unique properties. Coated self-assembled nanoparticles are also studied and recent progress is reported. 相似文献
10.
New tellurite glass series of the form (70-x)TeO2-20WO3-10Li2O-xLn2O3, where x=0, 1, 3 and 5 mol% and Ln=Nd, Sm and Er, were prepared. Density of the prepared glasses was measured and molar volume was calculated. Luminescence spectra of the prepared glasses were measured at room temperature using a micro-Raman spectrometer. The obtained luminescence intensity ratio was correlated with the rare earth ion concentration, the short distance between the identical rare earth ions r(Ln-Ln) and the glass density. Optical properties like refractive index, molar refractivity and optical polarizability were theoretically calculated in order to interpret the dependence of these properties on the rare earth ion content. 相似文献
11.
Xianke GuGuojian Wang 《Applied Surface Science》2011,257(6):1952-1959
The scanning force microscope (SFM) was used to investigate morphology of poly(ethylene oxide) (PEO) and poly(acrylic acid) (PAA) blend. The effect of solvent and dewetting in surface structure of PEO film was reported. The results manifested that the crystallization of PEO could be suppressed completely in ultrathin region via using chloroform as a solvent, and the branched-like crystallization was recovered after dewetting. Also, the effect of thickness, the ratio of PEO/PAA and dewetting in surface morphology of PEO-PAA blend films were investigated. These results showed that the crystallization was highly dependent on the ratio of PEO/PAA and the thickness of blend film. Furthermore, we assembled the PEO/PAA layer-by-layer film by spin-casting method for the first time, which exhibited highly efficiency. As a complementary tool, we also used lateral force microscopy (LFM) to explore surface information of these films. The result was indicative of interfacial constraints in ultrathin region, and also was supported by the results showing the spin-casting PEO/PAA blends rather than heterogeneous mixture. 相似文献
12.
Optical properties of iridium oxide films fabricated by the spray pyrolysis technique (SPT) have been investigated. The transmission and reflection spectra of the sprayed films were measured by using a double-beam spectrophotometer in the wavelength range from 200 to 2500 nm. Influences of the preparative parameters; namely, substrate temperature (350-500 °C) and solution molarity (0.005-0.03 M), on the optical characteristics were examined. The solution molarity of the iridium chloride solution was varied so as to prepare iridium oxide thin films with thicknesses ranging from 160 to 325 nm. Some important characteristics of optical absorption, such as optical dispersion energies, the dielectric constant, the ratio of the number of charge carriers to the effective mass, the single oscillator wavelength, and the average value of the oscillator strength, were evaluated. The value of the refractive index was found to depend on the chemical composition as well as the degree of stoichiometry of IrO2. The values obtained for the high frequency dielectric constant through two procedures are in the range of 2.8-3.9 and 3.3-4.6 over the relevant ranges of the substrate temperature and solution molarity, respectively. Analysis of the energy dispersion curve of the absorption coefficient indicated a direct optical transition with the bandgap energy ranging between 2.61 and 2.51 eV when the substrate temperature increases from 350 to 500 °C. 相似文献
13.
Hee Baek Lee Anjanapura V. Raghu Koo Sik Yoon Han Mo Jeong 《Journal of Macromolecular Science: Physics》2013,52(4):802-809
The nanocomposite films of a functionalized graphene sheet (FGS) and poly(ethylene oxide) (PEO) were cast from the physical blend of an aqueous FGS dispersion assisted by sodium dodecyl sulfate and an aqueous PEO solution. The thermal properties observed by differential scanning calorimetry suggested that FGS had a nucleating effect on the PEO crystallization. However, we found FGS actually hindered the growth of PEO crystals. The dynamic mechanical properties indicated that FGS effectively reinforced the matrix PEO. The FGS also efficiently improved the electric conductivity of PEO. With the addition of 2 parts of FGS per 100 parts of PEO, the conductivity was increased by more than 103-fold from that of pristine PEO. 相似文献
14.
Using urea as fuel and boric as flux, a novel bluish green emitting phosphor Li2(Ba0.99,Eu0.01)SiO4:B3+ has been successfully synthesized using a combustion method. The material has potential application as the fluorescent material for ultraviolet light-emitting diodes (UV-LEDs). The dependence of the properties of Li2(Ba0.99,Eu0.01)SiO4:B3+ phosphors upon urea concentration, boric acid doping and initiating combustion temperature were investigated. The crystallization and particle sizes of Li2(Ba0.99,Eu0.01)SiO4:B3+ have been investigated by using powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). Luminescence measurements showed that the phosphors can be efficiently excited by ultraviolet (UV) to visible region, emitting a bluish green light with peak wavelength of 490 nm. The results showed that the boric acid was effective in improving the luminescence intensity of Li2(Ba0.99,Eu0.01)SiO4 and the optimum molar ratio of boric acid to barium nitrate was about 0.06. The optimized phosphors Li2(Ba0.99,Eu0.01)SiO4:B0.063+ showed 160% improved emission intensity compared with that of the Li2(Ba0.99,Eu0.01)SiO4 phosphors under UV (λex=350 nm) excitation. 相似文献
15.
Mutsumasa Kyotani Wiwik Pudjiastuti Akhtar Saeed 《Journal of Macromolecular Science: Physics》2013,52(3):197-215
Structural, Theological, thermal, and mechanical properties of blends of poly(ethylene naphthalate) (PEN) and poly(ethylene terephthalate) (PET) obtained by melt blending were investigated using capillary rheometry, differential scanning calorimetry (DSC), scanning electron microscopic (SEM) observation, tensile testing. X-ray diffraction, and 1H nuclear magnetic resonance (NMR) measurements. The melt Theological behavior of the PEN/PET blends was very similar to that of the two parent polymers. The melt viscosity of the blends was between that of PEN and that of PET. Thermal properties and NMR measurement of the blends revealed that PEN is partially miscible with PET in the as molded blends, indicating that an interchange reaction occurs to some extent on melt processing. The blend of 50/50 PEN/PET was more difficult to crystallize compared with blends of other PEN/PET ratios. The blends, once melted during DSC measurements, almost never showed cold crystallization and subsequent melting and definitely exhibited a single glass transition temperature between those of PEN and PET during a reheating run. Improvement of the miscibility between PEN and PET with melting is mostly due to an increase in transesterification. The tensile modulus of the PEN/PET blend strands had a low value, reflecting amorphous structures of the blends, while tensile strength at the yield point increased linearly with increasing PEN content. 相似文献
16.
M.M. El-Nahass 《Optics Communications》2011,284(9):2259-2732
Thin films of 5,10,15,20-Tetrakis (4-methoxyphenyl)-21H,23H-porphine cobalt (II), CoMTPP were prepared at room temperature (300K) by the thermal evaporation technique under vacuum pressure about 2 × 10− 4Pa. The X-ray diffraction patterns showed the amorphous nature for the as-deposited and the irradiated films, whereas the powder has shown a polycrystalline with triclinic structure. Miller's indices, hkl, values for each diffraction peak in the XRD spectrum were calculated. Optical properties of CoMTPP thin films were characterized by using spectrophotometric measurements of transmittance and reflectance in the spectral range from 200 to 2500 nm. The refractive index, n, and the absorption index, k, were calculated. The obtained data were used to estimate the type of transitions and the optical and fundamental gaps before and after X-ray irradiation. In addition, the normal dispersion of the refractive index is discussed in terms of lorentz-lorentz free single oscillator model and modified lorentz Drude model of free carrier contribution. 相似文献
17.
Wei Shi Changshui Fang Feng Li Qiwei Pan Qintian Gu Dong Xu Hongzheng Wei Jinzhong Yu 《Optics and Lasers in Engineering》2001,35(1):19
The polyetherketone (PEK-c) guest–host polymer films doped with (4′-nitro)-3-azo-9-ethyl-carbazole (NAEC) were prepared. The films were poled by corona-onset poling at elevated temperature (COPET). The orientational order parameter of the chromophores NAEC in poled polymer film was determined by measuring the absorption spectra of the films before and after being poled. By using the two-level model, the measured dispersion of the refractive index of the polymer film, and the dispersion of the first hyperpolarizability of chromophore NAEC, the dispersion of the macroscopic second-order nonlinear optical (NLO) and linear electro-optic (EO) coefficients was evaluated for the NAEC/PEK-c guest–host polymer film. 相似文献
18.
Y.I. JeongC.M. Shin J.H. HeoH. Ryu W.J. LeeJ.H. Chang C.S. SonJ. Yun 《Applied Surface Science》2011,257(24):10358-10362
Well-aligned single crystalline zinc oxide (ZnO) nanorods were successfully grown, by hydrothermal synthesis at a low temperature, on flexible polyethylene terephthalate (PET) substrates with a seed layer. Photoluminescence (PL), field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) measurements were used to analyze the optical and structural properties of ZnO nanorods grown for various durations from 0.5 h to 10 h. Regular and well-aligned ZnO nanorods with diameters ranging from 62 nm to 127 nm and lengths from 0.3 μm to 1.65 μm were formed after almost 5 h of growth. The growth rate of ZnO grown on PET substrates is lower than that grown on Si (1 0 0) substrates. Enlarged TEM images show that the tips of the ZnO nanorods grown for 6 h have a round shape, whereas the tips grown for 10 h are sharpened. The crystal properties of ZnO nanorods can be tuned by using the growth duration as a growth condition. The XRD and PL results indicate that the structural and optical properties of the ZnO nanorods are most improved after 5 h and 6 h of growth, respectively. 相似文献
19.
An experimental study on the effect of mesoporous silica addition on ion conductivity of poly(ethylene oxide) electrolytes 总被引:1,自引:0,他引:1
Solid polymer electrolyte (SPE) composites, which are composed of poly(ethylene oxide) (PEO), mesoporous silica (SBA-15), and lithium salt were prepared in order to investigate the influence of SBA-15 content on the ionic conductivity of the composites. The ionic conductivity of the SPE composites was monitored by frequency response analyzer (FRA), and the crystallinity of the SPE composites was evaluated by using XRD. As a result, the addition of SBA-15 to the polymer mixture inhibited the growth of PEO crystalline domain, due to the mesoporous structure of the SBA-15. Also, the PEO16LiClO4/SBA-15 composite electrolytes show an increased ion conductivity as a function of SBA-15 content up to 15 wt.%. These ion conductivity characteristics are dependent on crystallinity with SBA-15 content. 相似文献
20.
Cobalt nanoparticles coated with zinc oxide can form composite spheres with core-shell structure. This coating process was based on the use of silane coupling with agent 3-mercaptopropyltrimethoxysilane (HS-(CH2)3Si(OCH3)3, MPTS) as a primer to render the cobalt surface vitreophilic, thus it renders cobalt surface compatible with ZnO. X-ray photoelectron spectroscopy (XPS) was used to gain insight into the way in which the MPTS is bound to the surface of the cobalt nanoparticles. The morphological structure, chemical composition, optical properties and magnetic properties of the product were investigated by using transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), photoluminescence (PL) spectroscope and vibrating sample magnetometer (VSM). It was found that the Co/ZnO core-shell structure nanocomposites exhibited both of favorable magnetism and photoluminescence properties. Results of the thermogravimetric analysis (TGA) and differential thermal analysis (DTA) indicated that the thermal stability of cobalt/zinc oxide was better than that of pure cobalt nanoparticles. 相似文献