首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Photoluminescent phosphors CaGa2S4: Eu2+, RE3+ (RE3+ including all rare earth ions except for Sc3+, Pm3+, Eu3+ and Lu3+) were prepared by sintering at high temperature in a reductive atmosphere, and their luminescent properties were studied intensively. The influences of co-doping rare earth ions on their luminescent properties were also investigated. No remarkable differences were found from excitation spectra of co-doped phosphors CaGa2S4: Eu2+, RE3+ in contrast with that of phosphor CaGa2S4: Eu2+, but there were a few differences in emission spectra of Ce3+, Pr3+ or Ho3+ co-doped phosphors. Phosphors CaGa2S4: Eu2+, RE3+ (RE=Ce, Pr, Gd, Tb, Ho and Y) had persistent afterglow, and very short afterglow was shown for Nd3+ or Er3+ co-doped phosphors, but no long afterglow appeared when auxiliary activator was La3+, Sm3+, Dy3+, Tm3+ or Yb3+. Among the phosphors with long-lasting phosphorescence, in our experiments, CaGa2S4: Eu2+, Ho3+ had the longest and the highest brightness long yellow afterglow. Thermo-luminescence of all co-doped phosphors was measured to find the answer of different influences from different rare earth auxiliary activators.  相似文献   

2.
The luminescent properties of CaYBO4:Ln(Ln=Eu3+, Tb3+) were investigated under ultraviolet (UV) and vacuum ultraviolet (VUV) region. The CT band of Eu3+ at about 245 nm blue-shifted to 230 nm in VUV excitation spectrum; the band with the maximum at 183 nm was considered as the host lattice absorption. For the sample of CaYBO4:0.08Tb3+, the bands at about 235 and 263 nm were assigned to the f-d transitions of Tb3+ and the CT band of Tb3+ was calculated according to Jφrgensen's theory. Under UV and VUV excitation, the main emission of Eu3+ corresponding to the 5D0-7F2 transition located at about 610 nm and two intense emission of Tb3+ from the 5D4-7F5 transition had been observed at about 542 and 552 nm, respectively. With the incorporation of Gd3+ into the host lattice of CaYBO4, the luminescence of Tb3+ was enhanced while that of Eu3+ was decreased because of their different excitation mechanism.  相似文献   

3.
We have studied the photoluminescence (PL) of (Y, Ln)VO4:Eu3+ (Ln=La and Gd) phosphors and the correlation of the PL of those phosphor with their crystal structure. It is found that (Y, Gd)VO4:Eu3+ phosphors have the same crystal structure as YVO4:Eu3+, which is tetragonal with a little different lattice parameters. In the case of (Y, La)VO4:Eu3+ phosphors, however, the gradual change from tetragonal to monoclinic structure of host lattice was observed as the amount of La ion increased. To investigate the PL property of (Y, Ln)VO4:Eu3+ (Ln=La and Gd) phosphors, vacuum ultraviolet (VUV) and ultraviolet (UV) excitation were used. The favorable crystal structure for the PL intensity of orthovanadate phosphor under 147 and 254 nm excitation was tetragonal containing Gd ion and under 365 nm excitation was monoclinic containing La ion which might have the lowest site symmetry for Eu3+ ion.  相似文献   

4.
Monoclinic LnPO4:Tb,Bi (Ln=La,Gd) phosphors were prepared by hydrothermal reaction and their luminescent properties under ultraviolet (UV) and vacuum ultraviolet (VUV) excitation were investigated. LaPO4:Tb,Bi phosphor and GdPO4:Tb phosphor showed the strongest emission intensity under 254 and 147 nm excitation, respectively, because of the different energy transfer models. In UV region, Bi3+ absorbed most energy then transferred to Tb3+, but in VUV region it was the host which absorbed most energy and transferred to Tb3+.  相似文献   

5.
Vacuum ultraviolet (VUV) excitation and photoluminescence (PL) characteristics of Eu3+ ion doped borate phosphors; BaZr(BO3)2:Eu3+ and SrAl2B2O7:Eu3+ are studied. The excitation spectra show strong absorption in the VUV region with the absorption band edge at ca. 200 nm for BaZr(BO3)2:Eu3+ and 183 nm for SrAl2B2O7:Eu3+, respectively, which ensures the efficient absorption of the Xe plasma emission lines. In BaZr(BO3)2:Eu3+, the charge transfer band of Eu3+ does not appear strongly in the excitation spectrum, which can be enhanced by co-doping Al3+ ion into the BaZr(BO3)2 lattices. The luminescence intensity of BaZr(BO3)2:Eu3+ is also increased by Al3+ incorporation into the lattices. The PL spectra show the strongest emission at 615 nm corresponding to the electric dipole 5D07F2 transition of Eu3+ in both BaZr(BO3)2 and SrAl2B2O7, similar to that in YAl3(BO3)4, which results in a good color purity for display applications.  相似文献   

6.
The photoluminescent (PL) emission and excitation behaviour of green-emitting CaAl2S4:Eu2+ powder phosphor is reported in detail. CaAl2S4:Eu2+ emission provides good CIE colour coordinates (x=0.141; y=0.721) for the green component in display applications. Powder with a dopant concentration of 8.5 mol% shows the highest luminescence efficiency. Temperature dependence of the radiative properties, such as luminescence intensity and decay time, was investigated. In particular, the Stokes shift, the mean phonon energy, the redshift, the energy of the f→d and d→f transition and the crystal field splitting of the CaAl2S4:Eu2+ emission were determined. The thermal quenching of the emission was examined.  相似文献   

7.
Tb3+:NaGd(WO4)2 (Tb:NGW) phosphors with different Tb3+ concentrations have been synthesized by a mild hydrothermal process directly without further sintering treatment. X-ray diffraction (XRD), scanning electron microscope (SEM), photoluminescence excitation and emission spectra and decay curve were used to characterize the Tb:NGW phosphors. XRD analysis confirmed the formation of NGW with scheelite structure. SEM study showed that the obtained Tb:NGW phosphors appeared to be nearly spherical and their sizes ranged from 1 to 1.5 μm. The excitation spectra of these systems showed an intense broad band with maximum at 270 nm related to the O→W ligand-to-metal charge-transfer state. Photoluminescence spectra indicated the phosphors emitted strong green light centered at 545 nm under UV light excitation. Analysis of the photoluminescence spectra with different Tb3+ concentrations revealed that the optimum dopant concentration for Tb3+ is about 15 at% of Tb3+ ions in Tb:NGW phosphors.  相似文献   

8.
In the last years many insulating and semiconducting materials activated with rare-earth elements were found to exhibit phosphorescence and thermoluminescence properties, and are attracting increasing interest due to the variety of application of long-lasting phosphors. In this work we studied the phosphorescence decay and thermoluminescence properties of CaGa2S4:Eu2+ as a function of temperature in the 9-325 K range. The comparison between spectra recorded as a function of time delay from the excitation pulse at different temperatures indicates that long-lasting emissions peaked at about 2.2 eV occurs at Eu2+ sites. Thermoluminescence glow curve is characterized by five components at 69, 98, 145, 185 and 244 K. Experimental data are discussed in the framework of generalized order of kinetic model and allow to estimate the activation energies of trapping defects. The origin of glow components at 69, 98, 145 and 244 K is correlated to trapping defects induced by Eu2+ doping, while the component at 185 K is attributed to a continuous distribution of defects.  相似文献   

9.
Solid solutions of vanadates of formula BixLn1−xVO4 (Ln=Y, Gd) doped with Eu3+ or Sm3+ ions have been synthesized by solid-state reactions. Intense red/orange-red luminescence is obtained in these samples on excitation in the broad charge-transfer band in the near UV. The excitation in the Eu3+ levels leads to much less intense red emission. These materials could find applications as red phosphors for solid-state white lighting devices utilizing GaN-based excitation in the near UV.  相似文献   

10.
Spectroscopic properties of Ce3+ and Pr3+-doped AREP2O7-type alkali rare earth diphosphates (A=Na, K, Rb, Cs; RE=Y, Lu) have been investigated using VUV spectroscopy technique. Ce3+-doped samples show typical Ce3+ emission in the range of 325-450 nm. The strong host absorption band starting at around 160 nm indicates that the optical band gap of AREP2O7 hosts is at least 7.7 eV, and the host→Ce3+ energy transfer process is rather efficient. However, AREP2O7:Pr3+ samples show less efficient host→Pr3+ energy transfer. The direct Pr3+ 4f2→4f15d1 excitation, which are 12160±640 cm−1 higher respect to that of Ce3+, leads to strong 4f15d1→4f2 emission bands in the range of 230-325 nm but no obvious 4f2→4f2 emission lines.  相似文献   

11.
When certain trivalent rare-earth ions (Ln's) are co-doped in CaGa2S4:Mn2+ as sensitizers, the Mn red emission of the compound is strikingly enhanced. In this work, efficiency of each lanthanide is studied. The best efficiencies are achieved with La3+-, Pr3+-, and Tb3+- co-doped compounds, for each of which the effects of concentrations of the co-doped ions on the Mn2+ emission are investigated. The energy-transfer mechanisms and the location of electronic energy levels of both the trivalent and the divalent lanthanides in the energy band gap of the host material are discussed. Depending on Ln's, charge transfer or cross-relaxation should be taken into account.  相似文献   

12.
In an attempt to find a neodymium-vanadate system with long lifetime of 4F3/2 level and relatively strong 4F3/24I11/2 emission for laser applications, the optical properties of Nd3+ in a new KZnLa(VO4)2 host is reported. The crystalline samples were obtained at 900 °C in air. The samples were crystallized in monoclinic system and were isostructural with KZnLa(PO4)2. KZnLa0.99Nd0.01(VO4)2 strongly emits in the near infrared range with the maxima at 871.6 and 1057 nm upon excitation through the 4F5/2 level (808 nm) or by the charge transfer bands of VO43−. The lifetime of 4F3/2 level of Nd3+ ion is larger than that observed in other neodymium-vanadates systems.  相似文献   

13.
Synthesis and photoluminescence (PL) investigations of lithium metasilicate doped with Eu3+, Tb3+ and Ce3+ were carried out. PL spectra of Eu-doped sample showed peaks corresponding to the 5D07Fj (j=1, 2, 3 and 4) transitions under ultraviolet excitation. Strong red emission coming from the hypersensitive 5D07F2 transition of Eu3+ ion suggested the presence of the dopant ion in structurally disordered environment. Tb3+-doped silicate sample showed blue-green emission corresponding to the 5D47Fj (j=6, 5 and 4) transitions. Ce-doped sample under excitation from UV, showed a broad emission band in the region 350-370 nm with shoulders around 410 nm. The fluorescence lifetimes of Eu3+ and Tb3+ ions were found out to be 790 and 600 μs, respectively. For Ce3+, the lifetime was of the order of 45 ns. PL spectra of the europium- and terbium-doped samples were compared with commercial red (Y2O3:Eu3+) and green (LaPO4:Tb3+) phosphors, respectively. It was found that the emission from the doped silicate sample was 37% of the commercial phosphor in case of the Tb-doped sample and 8% of the commercial phosphor in case of the Eu-doped sample.  相似文献   

14.
Zinc silicate phosphors co-doped with Eu3+ ions and also with both Eu3+ and Tb3+ ions were prepared by high temperature solid state reaction in air or reducing atmosphere. The luminescence characteristics of the prepared phosphors were investigated. While in the samples prepared in air, Eu3+ emission was found to be dominant over Tb3+ emission, in the samples prepared in reducing atmosphere, intense Eu2+ emission at 448 nm was found to be predominant over narrow Tb3+ emission. Luminescence studies showed that Eu3+ ions occupy asymmetric sites in Zn2SiO4 lattice. The intense f-f absorption peak of Eu3+ at 395 nm observed in these phosphors suggests their potential as red emitting phosphors for near ultra-violet light emitting diodes.  相似文献   

15.
Newly synthesized reference MgLaLiSi2O7 and red luminescent Eu3+:MgLaLiSi2O7 powder phosphors have been successfully developed by a solid-state reaction method to analyze their emission and structural properties from the measurement of their XRD, SEM, FTIR and PL spectra. Emission spectra of Eu3+ powder phosphors have shown strong red emissions at 613 nm (5D07F2). These phosphors have also shown bright red emissions under a UV source. Based on the red emission performance, the Eu3+ concentration has been optimized to be at 0.3 mol%.  相似文献   

16.
Phosphor material BaAl2O4:Eu2+, Dy3+ with varying compositions of Sr substitution were prepared by the solid-state synthesis method. The phosphor compositions were characterized for their phase and crystallinity by XRD, SEM and TEM. Photoluminescence (PL) properties were investigated measuring PL and decay time for varying Ba/Sr compositions. The PL results show the blue shift in the luminescence properties in Sr substituted BaAl2O4:Eu2+, Dy3+ compared to parent BaAl2O4:Eu2+, Dy3+. It is probably due to the influence of 5d electron states of Eu2+ in the crystal field because of atomic size variation causing crystal defects. Dy3+ ion doping in the phosphor generates deep traps, which results in long afterglow phosphorescence.  相似文献   

17.
The effect of K+ ions on GdTaO4:Eu3+ thin-film phosphors was investigated in order to improve their luminescent properties. The GdTaO4:Eu0.1, Kx thin films were synthesized by sol-gel process, and characterized through measuring their microstructure and luminescence. The results indicated that photoluminescence (PL) intensity of GdTaO4:Eu3+ film was improved remarkably by K doping. There were two maxima in the curve of PL intensity against K+ dopant concentration, where one was improved up to 2.1 times at x = 0.001 and the other was enhanced up to 2.7 times at x = 0.05. The first maximum was regarded as the alteration of the local environment surrounding the Eu3+ activator by incorporation of K+ ions, and the second maximum was due to the flux effect. Additionally, the luminescence increased with the increase of firing temperature from 800 °C to 1200 °C.  相似文献   

18.
Wet chemical synthesis of LiAEAlF6:Eu (AE=Mg, Ca, Sr or Ba) phosphors is described. Formation of single-phase compounds LiCaAlF6 and LiSrAlF6 was confirmed by XRD. LiCaAlF6:Eu and LiSrAlF6:Eu phosphors exhibited broadband emission corresponding to intraconfigurational transition 4f65d1→4f7(8S7/2). LiMgAlF6:Eu exhibits a narrow line emission corresponding to 6PJ8S7/2 transition of 4f7 configuration besides the band emission. LiBaAlF6:Eu, on the other hand, was found to yield predominantly line emission.  相似文献   

19.
We have determined the photophysical properties of [Eu(C12H8N2)2](NO3)3, (EuPhen), a complex which is very promising for photonic and optoelectronic applications, because of its easy synthetic procedure and high thermal stability (up to 300 °C) combined with large sensitization efficiency and good emission quantum yield. Available experimental absorption and emission data have been analyzed by using Judd-Ofelt analysis. Moreover, semi-empirical calculations have been used to determine the structure of the complex and to interpret the convoluted shape of the absorption spectrum.  相似文献   

20.
Sodium europium double tungstate [NaEu(WO4)2] phosphor was prepared by the solid-state reaction method. Its crystal structure, photoluminescence properties and thermal quenching characteristics were investigated aiming at the potential application in the field of white light-emitting diodes (LEDs). The influences of Sm doping on the photoluminescence properties of this phosphor were also studied. It is found that this phosphor can be effectively excited by 394 or 464 nm light, which nicely match the output wavelengths of near-ultraviolet (UV) or blue LED chips. Under 394 or 464 nm light excitation, this phosphor exhibits stronger emission intensity than the Y2O2S:Eu3+ or Eu2+-activated sulfide phosphor. The introduction of Sm3+ ions can broaden the excitation peaks at 394 and 464 nm of the NaEu(WO4)2 phosphor and significantly enhance its relative luminance under 400 and 460 nm LEDs excitation. Furthermore, the relative luminance of NaEu(WO4)2 phosphor shows a superior thermal stability compared with the commercially used sulfide or oxysulfide phosphor, and make it a promising red phosphor for solid-state lighting devices based on near-UV or blue LED chips.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号