首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dinuclear lanthanide (Ln=Tb3+ or Eu3+) complexes (Ln2L2) of two octadentate macrocyclic polyaminopolycarboxylic ligands connected through a benzophenone (BP) moiety (L2) have been synthesized. Sensitized luminescence properties of Ln2L2 in water have been studied in comparison to those of BP-conjugated mononuclear Ln complexes (LnL1). The luminescence intensity of Tb2L2 is lower than that of TbL1 because of lower triplet quantum yield of the BP moiety. In contrast, Eu2L2 shows higher intensity than EuL1. For both Eu complexes, energy level of triplet excited-state BP (3BP*) is only 3 kJ mol−1 higher than that of 5D2 excited-state of Eu3+. The 5D2 state formed by a triplet-energy transfer (TET) from 3BP* is therefore deactivated by a back energy transfer (BET) to the ground-state BP, resulting in low luminescence intensity of EuL1. In contrast, within Eu2L2, TET from 3BP* to 5D0 state of two Eu3+ ions is accelerated, thus leading to higher luminescence intensity. Another notable feature of Eu2L2 is the luminescence quantum yield independent of its concentration. In contrast, for EuL1 system, an intermolecular BET occurs from 5D2 state of Eu3+ to the ground-state BP conjugated to another EuL1 complex, resulting in a yield decrease with the concentration increase.  相似文献   

2.
Four new polycarboxylate ligands H3Ln have been synthesized by the attachment of two or one 2,2′-bipyridine subunits onto a diethylenetriamine pentacarboxylic acid (DTPA-bisamide derivatives: H3L1, H3L2) or a diethylenetriamine tricarboxylic acid (DTTA derivatives: H3L3, H3L4) core. The neutral EuIII and TbIII complexes of these chelates have been prepared and studied from their UV-vis and luminescence data. The main photophysical characteristics of these complexes, i.e. the absorption and luminescence spectra, the metal-centred lifetimes and the overall luminescence yields (Φ) were measured in buffered aqueous solutions. In addition the role played by non-radiative paths (vibrational energy transfer involving coordinated water molecules, involvement of ligand-to-metal charge-transfer excited states, or metal→ligand back-transfer) was investigated. In all complexes, we found that the bidentate bipyridine chromophore is not coordinated to the lanthanide ion, allowing one (LnL1, LnL2) or two (LnL3, LnL4) water molecules to penetrate the first coordination sphere of the metal. Although the bipyridine chromophore behaves as remote (from the binding site) light-harvesting unit for the lanthanide ion in these systems, a sizeable sensitization of the Eu- and Tb-centred luminescence can be effective (LnL2, LnL3, Φ=16-19% in aerated D2O solutions). Our photophysical investigations show that overall non-radiative deactivation is not dependant of thermally activated non-radiative channels but the efficiency of the ligand→Ln intramolecular energy transfer has to be taken into account to explain the obtained results.  相似文献   

3.
Four Ln3+ coordination complexes with the formulas [Ln(p-toluylate)2(Ac)(H2O)]n (Ln=Ho 1, Yb 2) and {[Ln2(OOCCH2CH2COO)3(H2O)4]·6H2O}n (Ln=Ho 3, Yb 4) were synthesized hydrothermally. Their structures were determined by single-crystal X-ray diffraction. Complexes 1 and 2 are isomorphic and form infinite 2D network structures comprising p-toluylate and acetate (Ac) moieties. Complexes 3 and 4 are also isomorphic and possess infinite 2D structures in which succinate acts as bridging ligands that are connected to a 3D hydrogen bonding network by O–H…O hydrogen bonds. Solid-state IR and UV-Vis-NIR spectra, excitation and emission spectra were determined for the four complexes at room temperature. Complexes 1 and 2 exhibit characteristic NIR emission bands of Ln3+ ions but these are shifted and split relative to the theoretical positions. This is also evident for their UV-Vis-NIR spectra. The influence of ligands on enhancing the NIR luminescence of Ln3+ ions in complexes is discussed.  相似文献   

4.
A series of high luminescent europium complexes have been synthesized, such as Eu(TFNB)3phen (1), Eu(PFNP)3phen (2), Eu(HFNH)3phen (3) and Eu(PFND)3phen (4), which have β-diketone ligands containing fluorinated alkyl chains with different lengths and conjugated naphthyl groups, i.e., 4,4,4-trifluoro-1-(2-naphthyl)butane-1,3-dione (TFNB); 4,4,5,5,5-pentafluoro-1-(2-naphthyl)pentane-1,3-dione (PFNP); 4,4,5,5,6,6,6-heptafluoro-1-(2-naphthyl)hexane-1,3-dione (HFNH) and 4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-pentadecafluoro-1-(2-naphthyl)decane-1,3-dione (PFND). And 10-phenanthroline (phen) is coordinated as the neutral second ligand in 1-4. The crystal structures of 1 and 2 have been studied, which are typical and similar to that of 3. The results of TGA-DTA suggest that these Eu complexes have good thermal stabilities. By means of absorption and (time resolved) emission spectroscopy including determination of luminescence quantum yields, energy transfer dynamics and so on, the following results have been obtained: first, these Eu complexes show characteristic pure red color photoluminescence emission with high quantum efficiencies from the central Eu3+ ions through the excitation of the ligands; secondly, photophysical properties of 1, 2, 3 and 4, especially the lifetimes of excited states 5D0 of Eu3+ ions and quantum efficiencies are influenced by the different lengths of fluorinated alkyl chains, though the singlets (S1) and triplets (T1) of the fluorinated ligands are almost the same.  相似文献   

5.
FT-IR and Raman vibrational spectra and electronic emission spectra have been recorded for enantiomers of europium complexes with DBM: dibenzoylmethanate 1,2, and TTFA: 2-thenoyltrifluoroacetonate 3,4, employing the chiral ligands LSS(+)- and LRR(-)-4,5-pinene bipyridine. Contrary to the previously published X-ray data, where geometrical differences were stated to occur for particular enantiomers, the vibrational (and the emission) spectra of the individual optical isomers of a complex are not distinguishable. Using excitation into the Eu3+5D2 multiplet term, the emission intensity is weak from 5D1, whereas a complex structure is observed for the 5D07FJ transitions. Features in the vibronic sidebands exhibit similar derived vibrational energies to those observed in the Raman spectra. Fittings of 25 4f6 crystal-field energy levels of 2 and 4 have been attempted with some approximations concerning the local Eu3+ environments. The 5D0 emission lifetimes are monoexponential and are 0.5 (1,2) and 0.9 ms (3,4) at room temperature.  相似文献   

6.
Four heteronuclear Zn-Ln coordination complexes, [Nd2Zn2(p-toluylate)10(phen)2] (1), [Ln2Zn2(p-toluylate)10(phen)2]·2(HAc)1/2 (Ln=Tb 2, Ho 3) and [PrZn2(p-toluylate)5(Ac)2(phen)2] (4) (phen=1, 10-phenanthroline), are synthesized by the hydrothermal method and their structures are measured by single-crystal X-ray diffraction. The IR and UV-vis-NIR absorption spectra and the emission spectra in the visible and near-infrared (NIR) regions of the four complexes are determined at room temperature. In the NIR region (or in the visible region), the complexes show the characteristic emission bands of Ln3+ ions, which may be attributed to sensitization from the ligands (the ligand directly-coordinated to Ln3+ ions and d-block) to Ln3+ ions after forming the Zn-Ln complexes. It is reported for the first time in this paper that the Zn-Pr complex 4 can exhibit the broad emission band in the NIR region. In addition, the shift, split or broadness of the ff emission bands in the NIR region of complexes 1, 3 and 4 are discussed.  相似文献   

7.
Three complexes, Cd(8-aminoql)2×2 (8-aminoql=8-aminoquinoline; X=ClO4, SCN, 1 and 2, respectively) and Cd(8-aminoql)(N3)2 (3), were synthesized and structurally characterized. For each complex, the Cd2+ ion exhibits distorted octahedral coordination geometry. Two 8-aminoquinoline molecules and two counter-anions are coordinated to the Cd2+ center to form a mononuclear species with two trans-ClO4 anions for 1, while two SCN anions adopt a cis-configuration for 2. The intermolecular H-bonding interactions between the -NH2 groups and the O atom (1) and the S atom (2) result in the formation of a 2-D layered structure. In the crystal of 3, the N3 anions bridging the neighboring Cd(8-aminoql)2+ units form a 1-D coordination polymer. The three complexes emit green luminescence. The emission bands possess a broad asymmetric feature, which can be assigned to L′LCT transitions based on DFT and TDDFT calculations.  相似文献   

8.
Three novel Cu(I) complexes, [CuDPEphos(NN)]BF4, where NN=1-(4-5′-phenyl-1,3,4-oxadiazolylbenzyl)-2-pyridinylbenzoimidazole (OXD-Pybm; L1) (1), 1-(4-carbazolylbutyl)-2-pyridinylbenzimidazole (Carl-Pybm; L2) (2), and 1-H-2-pyridinylbenzimidazole (HPybm; L3) (3), were synthesized. The photoluminescent (PL) properties of 1-3 and the electroluminescent (EL) properties of complexes 1 and 2 were systematically studied. The maximum brightness of 2-based devices was 8669 cd/m2, which should be the best among the reported Cu(I) complexes-based devices.  相似文献   

9.
Two new isostructural complexes of europium picrate (Eu-Pic) with pentaethylene glycol (EO5) and 18-crown-6 (18C6) ligands formed complexes of molecular formula [Eu(Pic)2(18C6)]+(Pic)I and [Eu(Pic)2(EO5)]+(Pic)II have been isolated and characterised. Compound I showed 10-coordination number through six oxygen atoms from the 18C6 ligand and two bidentate picrate anions. Meanwhile, compound II exhibited 9-coordination number via six oxygen atoms from EO5 ligand, two oxygen atoms from a bidentate and one oxygen atom from monodentate picrate anions. Photoluminescence (PL) spectra of the solid-state europium complexes display sharp lines which are assigned to 5D07F0-4 and 5D17F1,2,4 transitions. No emission of polyether ligands is observed, indicating that the energy transfer from the polyether ligands to the Eu3+ ion is quite efficient. The PL spectra of [Eu(Pic)2(OH2)6]+(Pic)·6H2O III, [Eu(NO3)3(OH2)3]·(18C6) IV, [Eu(NO3)3·6H2O] V and Eu2O3VI are also observed. Compounds I-IV exhibited high Ω2 intensity parameter values, namely 16.93, 10.23, 17.10 and 12.35 (in units of 10−20 cm2), respectively. These relatively high values reflect the hypersensitive behaviour of the 5D07F2 transition and indicate that the Eu3+ ion is located in a highly polarisable chemical environment.  相似文献   

10.
Three novel lanthanide 1-D chain coordination polymers, namely {[Tb(μ2-L)2(η2-NO3)(CH3OH)(H2O)]·0.5CH3OH·0.5H2O}n (1), {[Dy(μ2-L)2(η2-NO3)(CH3OH)(H2O)]·H2O}n (2) and {[Ce(μ2-L)2(η2-NO3)(H2O)3]·H2O}n (3) (HL=N-benzoyl-N′-(4-benzoxy)thiourea), have been prepared and characterized by IR spectroscopy, elemental analysis and single-crystal X-ray diffraction. The luminescence properties and themostabilities of polymers 1-3 have been determined as well.  相似文献   

11.
Tetranuclear europium(III) complexes, [Eu4(μ-O)(L1)10] (L1=2-hydroxy-4-octyloxybenzophenone,1) and [Eu4(μ-O)(L2)10] (L2=2-hydroxy-4-dodecyloxybenzophenone,2) were synthesized by the reaction of lanthanide nitrates with L1 or L2 in the presence of triethylamine in methanol. The photosensitized emission bands of the both Eu(III) complexes in THF-d8 were observed around 579, 590, 615, 653, and 699 nm by the excitation of the ligands at 380 nm, whereas the emission from the mononuclear complex 3 containing ethanol molecules was almost quenched. The emission efficiencies were determined to be 3.1±0.1% for 1 and 3.9±0.1% for 2, respectively. The differential scanning calorimetry (DSC) measurements demonstrated that the decomposition points of 1 and 2 were 309 °C and 320 °C, respectively, indicating high thermostability of these complexes compared to the mononuclear Eu(III) complex 3 (250 °C). New strategy for designing stable rare earth compounds giving strong emission would be emphasized by introducing polynuclear complexes. Polynuclear complexes should open a wide range of molecular design for photosensitized luminescence and thermal stability.  相似文献   

12.
A novel conjugated molecule, L, based on 2,4,5-triphenylimidazole and 6-phenyl-2,2′-bipyridine (HCNN) was synthesized in two steps. The molecule can recognize Fe3+ in aqueous solution (THF/H2O, 1/1, v/v) by the appearance of new emission bands at 416 and 442 nm, which can be attributed to the emission of the newly formed L-Fe3+ complex. The binding constant of the complex was calculated to be (6.6±0.39)×103 M−1, and its formation was also confirmed by the appearance of isosbestic points at 312 and 381 nm in the UV-visible spectral titration experiment. While other transition and rare-earth metal ions, such as Mn2+, Fe2+, Co2+, Ni2+, Zn2+, Cd2+, Hg2+, Pb2+, Eu3+ and Nd3+, can only cause some decrease of L's fluorescence, alkali and alkaline earth metal ions, such as Li+, Na+, K+, Mg2+ and Ca2+, almost have no effect on L's fluorescence. The fluorescence of L can be recovered by the addition of EDTA to the L-Fe3+ system just due to EDTA's stronger chelating ability than that of L.  相似文献   

13.
The preparation and oxygen sensing properties of optical materials based on two trinuclear starburst ruthenium(II) complexes: [Ru3(bpy)6(TMMB)]6+ (1) and [Ru3(phen)6(TMMB)]6+ (2) (bpy=2,2′-bpyridine, phen=1,10-phenathroline, TMMB=1,3,5-tris[2-(2′-pyridyl)benzimidazoyl]methylbenzene) assembled in two mesoporous silicate (MS) are described in this paper. The luminescence of Ru complexes/silicate assemble materials can be quenched by molecular oxygen with good sensitivity (I0/I1>5 for 2/MS and I0/I1>3 for 1/MS), indicating that trinuclear starburst Ru(II) complexes/MS systems are sensitive to oxygen molecules.  相似文献   

14.
Three nickel complexes with a new multi-sulfur 1,2-dithiolene ligand, (n-Bu4N)[Ni(cddt)2] 1, (Ph4P)[Ni(cddt)2] 2 and [Ni(cddt)2] 3 (cddt=4a, 6, 7, 7a-5H-cyclopenta[b]-1,4-dithiin-2,3-dithiolate), have been synthesized and characterized by electrochemical measurements, IR, EPR and UV-Vis-NIR spectroscopies. The crystal structure of complex 2 is determined. Their optical nonlinearities are measured by the Z-scan technique with an 8 ns pulsed laser at 532 nm and all exhibit NLO absorptive abilities. Complexes 1 and 2 both exhibit effective self-defocusing performance (n2=−5.81×10−10 esu for 1 and −4.51×10−10 esu for 2). The optical limiting (OL) effects were observed with nanosecond and picosecond laser pulses. The OL capability of complex 3 is superior to C60 at the same experimental condition in ns measurements.  相似文献   

15.
Ca2B2O5:RE (RE = Eu3+, Tb3+, Dy3+) nanofibers were synthesized by the hydrothermal reaction method. The structural refinement was conducted on the base of the X-ray powder diffraction (XRD) measurements. The surface properties of the Ca2B2O5:RE (RE = Eu3+, Tb3+, Dy3+) nanofibers were investigated by the measurements such as the scanning electron microscope (SEM), transmission electron microscope (TEM), and the energy dispersive spectrum (EDS). The nanofiber has a diameter of about 100 nm and a length of several micrometers. The luminescence properties such as photoluminescence excitation (PLE) and emission spectra (PL), decay lifetime, color coordinates, and the absolute internal quantum efficiency (QE) were reported. Ca2B2O5:Eu3+ nanofibers show the red luminescence with CIE coordinates of (x = 0.41, y = 0.51) and the luminescence lifetime of 0.63 ms. The luminescence of Ca2B2O5:Tb3+ nanofibers is green color (x = 0.29, y = 0.53) with the lifetime of 2.13 ms. However, Dy3+-doped Ca2B2O5 nanofibers present a single-phase white-color phosphor with the fluorescence decay of 3.05 ms. Upon near-UV excitation, the absolute quantum efficiency is measured to be 65, 35, and 37 % for Eu3+-, Tb3+-, Dy3+-doped Ca2B2O5 nanofibers, respectively. It is suggested that Ca2B2O5:RE (RE = Eu3+, Tb3+, Dy3+) nanofibers could be an efficient phosphor for lighting and display.  相似文献   

16.
A new compound, 1-[p-(dimethylamino)benzoyl]-4′-phenyl-semicarbazide (1) was synthesized and showed highly selective response to Cu2+ over other metal ions such as Pb2+, Mg2+, Fe2+, Co2+, Zn2+, Cd2+, Hg2+, Ni2+, Ca2+, Ag+, Na+, K+, and Li+. The control compound, 1-[p-(dimethylamino)benzoyl]-4-phenyl-thiosemicarbazide (2), showed different fluorescence spectral response to Cu2+. A 1:1 complex between Cu2+ and 1 was formed while 1:1 and 1:2 complexes between Cu2+ and 2 were formed. The binding model between the receptor (1 or 2) and Cu2+ was supported by IR spectra, mass spectra, and computation model. 1 possessed higher selectivity towards Cu2+ compared with 2 owing to the difference of complexation ability between urea and thiourea groups.  相似文献   

17.
A new mono-functionalized porphyrin derivative, 5-mono-[4-(2-(4-hydroxy)-phenoxy)ethoxy]-10,15,20-triphenylporphyrin (3) and its Cu(II) (3a), Zn(II) (3b) and Ni(II) (3c) metalloporphyrins were synthesized and characterized by using various spectroscopic techniques. The corresponding 3a, 3b, 3c-TiO2 photocatalysts were then prepared and characterized by means of FT-IR and diffused reflectance spectra, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photocatalytic activities of 3a, 3b, 3c-TiO2 were investigated by testing the photodegradation of 4-nitrophenol (4-NP) in aqueous solution under the halogen lamp irradiation. The results indicated that all the 3a, 3b, 3c enhanced the photocatalytic efficiency of bare TiO2 in photodegrading the 4-NP, and 3a-TiO2 exhibited the highest photocatalytic activity. The result is considered a combined action of potential match of 3a with TiO2 CB and effective impregnated of 3a onto the surface of TiO2.  相似文献   

18.
The photophysical investigation of different para-substituted tetraphenylporphyrins (TP), viz., meso-tetra(4′-hydroxyphenyl)-21H-23H-porphyrin(1),meso-tetrakis(4′-hex-5-enyloxyphenyl)-21H-23H-porphyrin(2), meso-tetrakis(4′-oct-7-enyloxyphenyl)-21H-23H-porphyrin(3) and meso-tetrakis(4′-undecyloxyphenyl)-21H-23H-porphyrin (4) revealed that except for quantum yield (φ) the para-substitution has little effect on any other photophysical properties like lifetime, excitation, emission wavelength, etc. The host-guest type interactions of these tetraarylporphyrins (TP 1-4), with [60]-fullerene (F) have been studied with 1H NMR and fluorescence spectrometric techniques in carbon tetrachloride medium. Fluorescence studies revealed that the Q band of the TPs was sufficiently quenched upon addition of F. All the fullerene/porphyrin systems were found to produce stable complexes with 1:1 stoichiometry. Binding constants (K) of all the fullerene/porphyrin complexes have been determined by fluorescence quenching method. The association constant values for 1/F have been determined from plots of the Stern-Volmer equation (103.713×104) and the Benesi-Hildebrand equation (110.440×104). It has been observed that the insertion of long chain oxo-alkenyl/alkyl group in the para position of TPs in 2, 3 and 4 diminished the K values for F by two, four and even ten times with respect to that of 1. The observed trend in variation of the binding constants was supported by a gradual variation in the shift of 1H NMR signal when measurements were carried out in CDCl3.  相似文献   

19.
The reflection and luminescence excitation spectra of CaF2 crystals containing europium ions in divalent (Eu2+) and trivalent (Eu3+) states were measured in the range from 4 to 16 eV. It was established that, in CaF2 : Eu3+ crystals, luminescence of Eu3+ ions (the f-f transitions) is effectively excited both in the charge-transfer band (at ~8 eV) and in the region of the 4f–5d transitions (at ~10 eV) but is virtually not excited in the fundamental region of the crystal (at an energy higher than 10.5 eV). Luminescence of Eu2+ ions (the 427-nm band) in CaF2 : Eu3+ is effectively excited in the fundamental region of the crystal; i.e., luminescence of divalent europium ions occurs through the trapping mechanism. Emission of Eu2+ ions in CaF2 : Eu2+ crystals is characterized by the excitation band at an energy of 5.6 eV (the 4f → 5d,t 2g transitions), as well as by the exciton and interband luminescence excitations. The results obtained and data available in the literature are used to construct the energy level diagram with the basic electron transitions in the CaF2 : Eu crystals.  相似文献   

20.
Nanoparticles of a two-dimensional coordination polymer, {[Pb(L)(μ1,1-NCS)(H2O)]}n (1), (L = 1H-1,2,4-triazole-3-carboxylate), have been synthesized by a sonochemical process and characterized by scanning electron microscopy, X-ray powder diffraction, IR spectroscopy and elemental analyses. The thermal stability of compound 1 both its bulk and nano-size has been studied by thermal gravimetric (TG) and differential thermal (DTA) analyses and compared each other. Concentration of initial reagents effects and the role of power ultrasound irradiation on size and morphology of nano-structured compound 1, have been studied. Calcination of the single crystals and nano-sized compound 1 at 400 °C under air atmosphere yields mixture of PbS and Pb2(SO4)O nanoparticles. Results show that the size and morphology of the PbS and Pb2(SO4)O nanoparticles are dependent upon the particles size of compound 1. A decrease in the particles size of compound 1 leads to a decrease in the particles size of the PbS and Pb2(SO4)O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号