首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To identify the factors involved in the inhibition of ultrasound (US)-induced free radical production and cell killing by pre-sonication incubation or by high cell density, we used different densities of U937 cells, and with (up to 2 h) or without pre-sonication incubations, the cell suspensions were exposed to 1 MHz US (10% duty factor at 100 Hz pulse rate; intensities 0.1-0.5 W/cm(2) for 1 min). The intensity 0.3 W/cm(2) was used for cell killing experiments and 0.5 W/cm(2) for free radical experiments. Free radical production was determined by electron paramagnetic resonance (EPR)-spin trapping with DMPO while cell killing was determined by assays for lysis, loss of cell viability, apoptosis and necrosis. The results show that at higher cell densities, CO(2) in the medium rapidly increased, with shorter pre-sonication incubation required to attain complete inhibition of both free radical production and cell killing. Cell killing at 0.3 W/cm(2) and free radical production at 0.5 W/cm(2) were both inhibited at 10 million cells/ml without incubation, and at 2 million cells/ml incubated for 2 h before sonication. Level of CO(2) alone could not account for the inhibition; consumption of gases in the medium is also considered in the inhibitory effect of pre-sonication, while suppression of cavitational activities due to the "viscosity effect" is considered a more important factor in the inhibition by high cell density.  相似文献   

2.
Octyl β-D-glucopyranoside (OGP) has been reported to completely inhibit cavitation-induced cell lysis in vitro, possibly by quenching critical free-radical effects. In this study, the influence of OGP on cell lysis in a 60 rpm rotating-tube exposure apparatus was assessed. HL-60 cell lysis was estimated with a Coulter Multisizer counter. Cavitation activity from the 2.3 MHz, 30 s duration exposures were monitored at the 1.15 MHz subharmonic. Cavitation nucleation was accomplished by addition of an ultrasound contrast agent, or by using freshly dissolved culture media. For both nucleation methods, exposures were conducted for 0-0.7 MPa peak rarefactional pressure-amplitudes with and without 5 mM OGP, and for 0.5 MPa with 0-5 mM OGP. The addition of OGP to the cell suspension medium generally had little influence on cavitation-induced cell lysis. Exposures with no rotation had reduced subharmonic and lysis for added contrast agent, but essentially no cavitation for the fresh medium. Since the decreases or increases in cell lysis found for added OGP generally were accounted for by concomitant decreases or increases in cavitation activity, the changes in cell lysis could be explained by variation of the mechanical effects of cavitation without invoking a critical role for free-radical effects.  相似文献   

3.
莫润阳  林书玉  王成会 《物理学报》2011,60(11):114306-114306
理论和实验研究了超声空化场中的H-22型肝癌细胞产生可逆声孔效应的剪应力阈值.本文用1.37 MHz的聚焦声场,当超顺磁性纳米氧化铁在细胞悬液中的终浓度为410 μg/mL,换能器负载电功率为2 W,超声辐照60 s,细胞存活率90%以上时,有45.9±13.5%的细胞显示普鲁士蓝染阳性,暗示超声作用下,这些细胞表面曾出现可逆性微孔而使磁性微粒由此进入细胞内.利用无界自由空间微泡运动方程的球对称稳态解对实验条件下细胞膜表面的切变应力进行数值估算,结果表明,使H-22细胞产生可逆性声孔效应的微流剪应力阈值为697 Pa. 关键词: 声孔效应 磁性标记 微流 剪应力  相似文献   

4.
Hydroxyl free radicals produced in Fricke solution exposed to 80 kV X-rays or 23 kHz ultrasound (intensity 3 W cm−2) or 20 kHz ultrasound (intensity 18.9 W cm−2) or 3.5 MHz clinical ultrasound (intensity 1.47 W cm−2), as estimated from the Fricke dosimetric data, exhibited a linear dose-response relationship. The dosimeter was found to be effective in the concentration range 1.0–8.0 mM of FeSO4 solution. The hydroxyl radicals produced in Fricke solution were inhibited by the OH radical scavengers dimethyl sulfoxide (200 mM), -histidine (10 mM) and sodium benzoate (10 mM) in a manner proportional to the rate constants of their reaction with the OH radicals. The power threshold for OH radical formation, which is presumably the threshold for cavity formation, was estimated for 23 kHz ultrasound by this dosimeter as 1.28 W cm−2 for a 4 cm3 sample volume.  相似文献   

5.
Wang XB  Liu QH  Wang P  Tang W  Hao Q 《Ultrasonics》2008,48(2):135-140
The present study was initiated to investigate the potential biological mechanism of cell killing effect on isolate sarcoma 180 (S180) cells induced by ultrasound activating protoporphyrin IX (PPIX). S180 cells were exposed to ultrasound for 30 s duration, at a frequency of 2.2 MHz and an acoustic power of 3 W/cm2 in the presence of 120 μM PPIX. The viability of cells was evaluated using trypan blue staining. The generation of oxygen free radicals in cell suspensions was detected immediately after treatment using a reactive oxygen detection kit. A copper reagent colorimetry method was used to measure the level of FFAs released into cell suspensions by the process of cell damage induced by ultrasound and PPIX treatment. Oxidative stress was assessed by measuring the activities of key antioxidant enzymes (i.e., SOD, CAT, GSH-PX) in S180 tumor cells. Treatment with ultrasound and PPIX together increased the cell damage rate to 50.91%, while treatment with ultrasound alone gave a cell damage rate to 24.24%, and PPIX alone kept this rate unchanged. Colorimetry and enzymatic chemical methods showed that the level of FFAs in cell suspension increased significantly after the treatment, while the activity of all the above enzymes decreased in tumor cells at different levels, and were associated with the generation of oxygen free radicals in cell suspension after treatment. The results indicate that oxygen free radicals may play an important role in improving the membrane lipid peroxidation, degrading membrane phospholipids to release FFAs, and decreasing the activities of the key antioxidant enzymes in cells. This biological mechanism might be involved in mediating the effects on S180 cells and resulting in the cell damage seen with SDT.  相似文献   

6.
Many technologies, such as cell line screening and host cell engineering, culture media optimization and bioprocess optimization, have been proposed to increase monoclonal antibody (mAb) production in Chinese Hamster Ovary (CHO) cells. Unlike the existing biochemical approaches, we investigated stimulation using low-intensity pulsed ultrasound (LIPUS) as a purely physical approach, offering enhanced scalability, contamination control and cost-efficiency, while demonstrating significantly increased cell growth and antibody production. It was found that daily ultrasound treatments at 40 mW/cm2 for 5 min during cell culture increased the production of human anti-IL-8 antibody by more than 30% using 10 or 30 mL shake flasks. Further increasing the ultrasound dosage (either intensities or the treatment duration) did not appreciably increase cell growth or antibody production, however feeding the culture with additional highly-concentrated nutrients, glucose and amino acids (glutamine in this case), did further increase cell growth and antibody titer to 35%. Similar ultrasound treatments (40 mW/cm2, 5 min per day) when scaled up to larger volume wavebags, resulted in a 25% increase in antibody production. Increased antibody production can be attributed to both elevated cell count and the ultrasound stimulation. Theoretical study of underlying mechanisms was performed through the simulations of molecular dynamics using the AMBER software package, with results showing that LIPUS increases cell permeability. The significance of this study is that LIPUS, as a physical-based stimulation approach, can be externally applied to the cell culture without worrying about contamination. By combining with the existing technologies in antibody production, LIPUS can achieve additional mAb yields. Because it can be easily integrated with existing cell culture apparatuses, the technology is expected to be more acceptable by the end users.  相似文献   

7.
AIM: The present study was conducted to examine the thermal and non-thermal effects of ultrasound on apoptosis induced by anti-CD20 monoclonal antibody (rituximab). MATERIALS AND METHODS: SU-DHL-4 cells, a CD20-positive cell line derived from B cell lymphomas with a BCL2 gene rearrangement, were exposed to continuous 1 MHz ultrasound for therapeutic use under an air- or CO(2)-saturated condition to control cavitation. Early apoptosis (EA) and secondary necrosis (SN) were examined by flow cytometry. Cavitation was determined by detecting the hydroxyl radicals derived from pyrolysis of water molecules using electron paramagnetic resonance-spin trapping. To assess thermal effects, cells were treated in a temperature-controlled water bath. RESULTS: There was a significant additive increase in EA and EA+SN observed in cells treated with rituximab combined with heat at 42 degrees C or non-thermal ultrasound at 0.5 W/cm(2) under an air-saturated condition, where heat or ultrasound induced some cell death. A significant synergistic increase in EA and EA+SN was observed in cells treated with rituximab and ultrasound at 2.5 W/cm(2) under CO(2)-saturated conditions, where inertial cavitations were completely suppressed. No enhancement was observed at a temperature less than 40 degrees C or ultrasound at 0.5 W/cm(2) under CO(2)-saturated conditions. CONCLUSION: These results suggest that the immuno-therapeutic application of ultrasound at relatively high-intensities combined with rituximab thus produces synergistic effects under conditions where the non-thermal and non-cavitational effects are predominant.  相似文献   

8.

Background

Ultrasound therapy is a new modality in the control of malignant cancers. The aim of the present study was to investigate the effect of 5-aminolaevulinic acid on the ultrasonic killing action in the cancer cells.

Materials/methods

The K562 cells as a cancer cell model were subjected to investigate the effect of 5-aminolaevulinic acid (5-ALA) on the ultrasonic killing action, in which the 5-ALA concentration was 2 mM and the ultrasound exposure was 15 s at the intensity of 0.46 W/cm2 and the frequency of 1.7 MHz. Cytotoxicity was investigated 24 h after ultrasound exposure using the trypan blue exclusion test. Ultrastructural cell morphology and mitochondrial changes were observed using transmission electron microscopy (TEM). Mitochondrial membrane potential (ΔΨm) was evaluated using Rhodamine 123 assay.

Results

The death rates of the K562 cells in the controls including sham radiation and 5-ALA treatment alone were 1.81 ± 0.13%, 1.27 ± 0.20%, respectively. Those in ultrasound radiation alone and 5-ALA-ultrasound treatment were 12.61 ± 2.63%, 46.87 ± 4.09%, respectively. There were significant differences between 5-ALA-ultrasound treatment, ultrasound radiation alone and the controls (P < 0.05). TEM showed that the mitochondria expanding and some vacuoles were found in the ultrasound-treated cells. After the treatment of ultrasound and 5-ALA together some cells presented typical characteristics of apoptotic cells, such as nuclear condensation and crescent formation. Mitochondria of the cells were damaged more seriously than those treated by ultrasound alone, there were obvious swollen mitochondria and mitochondria in which cristae were almost perfectly disappeared, and more vacuolar mitochondria were founded. Mitochondrial membrane potential (ΔΨm) was more significantly collapsed when the K562 cells were exposed to 2 mM 5-ALA for 4 h and then 0.46 W/cm2 irradiation of ultrasound than ultrasound radiation alone.

Conclusion

5-ALA pretreatment significantly enhanced the cytotoxicity of ultrasound radiation in K562 cells. The damage of mitochondria structure and function might be an important cause of cell death in K562 cells induced by the treatment of ultrasound radiation and 5-ALA together.  相似文献   

9.
Recently it has been shown that long chain (C5-C8) n-alkyl glucopyranosides completely inhibit ultrasound-induced cytolysis [J.Z. Sostaric, N. Miyoshi, P. Riesz, W.G. DeGraff, and J.B. Mitchell, Free Radical Biol. Med., 39 (2005) 1539]. This protective effect has possible applications in HIFU (high intensity focused ultrasound) for tumor treatment, and in ultrasound assisted drug delivery and gene therapy. n-Alkyl glucopyranosides with hexyl (5mM), heptyl (3mM), octyl (2mM) n-alkyl chains protected 100% of HL-60 cells in vitro from 1.057 MHz ultrasound-induced cytolysis under a range of conditions that resulted in 35-100% cytolysis in the absence of glucopyranosides. However the hydrophilic methyl-beta-d-glucopyranoside did not protect cells. The surface active n-alkyl glucopyranosides accumulate at the gas-liquid interface of cavitation bubbles. The OH radicals and H atoms formed in collapsing cavitation bubbles react by H-atom abstraction from either the n-alkyl chain or the glucose moiety of the n-alkyl glucopyranosides. Owing to the high concentration of the long chain surfactants at the gas-liquid interface of cavitation bubbles, the initially formed carbon radicals on the alkyl chains are transferred to the glucose moieties to yield radicals which react with oxygen leading to the formation of hydrogen peroxide. In this work, we find that the sonochemically produced hydrogen peroxide yields from oxygen-saturated solutions of long chain (hexyl, octyl) n-alkyl glucopyranosides at 614 kHz and 1.057 MHz ultrasound increase with increasing n-alkyl glucopyranoside concentration but are independent of concentration for methyl-beta-D-glucopyranoside. These results are consistent with the previously proposed mechanism of sonoprotection [J.Z. Sostaric, N. Miyoshi, P. Riesz, W.G. DeGraff, and J.B. Mitchell, Free Radical Biol. Med., 39 (2005) 1539]. This sequence of events prevents sonodynamic cell killing by initiation of lipid peroxidation chain reactions in cellular membranes by peroxyl and/or alkoxyl radicals [V. Misik, P. Riesz, Ann. N.Y. Acad. Sci., 899 (2000) 335].  相似文献   

10.
Recent optical and acoustical studies have shown a threshold behaviour in the response of phospholipid-coated contrast agents, for a certain range of sizes. Below the acoustic pressure threshold, the microbubbles’ scattering efficacy is significantly reduced compared to that above the threshold. Here we investigate the clinical relevance of the observed threshold behaviour. A cardiac ultrasound scanner system was used to analyse the pressure-dependence of the scatter intensity. The scattering of a native suspension of a phospholipid-coated contrast agent was compared to that of a suspension in which microbubbles with a size larger than 3.0 μm in diameter were extracted. A power modulation scheme at the fundamental frequency was applied. After linearly scaling and subtracting the B-mode images recorded at 70 and 200 kPa, the contrast-to-tissue ratio (CTR) of the native suspension was 3.2 dB, whereas the CTR of the filtered suspension was 20 dB. The 17 dB difference is attributed to the threshold behaviour. Well-established ultrasound imaging techniques such as fundamental power modulation imaging could benefit from the pressure-dependent scattering properties of this type of contrast microbubbles.  相似文献   

11.
本论述了双波长倍增差示法同时测定了双嘧啶片中磺胺嘧啶(SD)和甲氧苄啶(TMP)的含量,本法是基于测定标准溶液SD(8~14)×10^-6g/mL,TMP(1~2)×10^-6g/mL,和样品溶液在242.5nm和228.0nm处的吸收度。SD和TMP的平均回收率与RSD分别为100.60%,0.33%,和98.27%,1.58(n=20)。本法简便快捷,结果满意。  相似文献   

12.
Carbon monoxide (CO), an endogenously produced gasotransmitter, has shown various therapeutic effects in previous studies. In this work, we developed an ultrasound responsive micelle for localized CO delivery. The micelle is composed of a pluronic shell and a core of a CO releasing molecule, CORM-2. The mechanism is based on the ultrasound response of pluronics, and the reaction between CORM-2 and certain biomolecules, e.g. cysteine. The latter allows CO release without significantly breaking the micelles. In a 3.5 mM cysteine solution, the micelles released low level of CO, indicating effective encapsulation of CORM-2. Treatment with a low intensity, non-focused ultrasound led to four times as much CO as the sample without ultrasonication, which is close to that of unencapsulated CORM-2. Significantly reduced proliferation of prostate cancer cells (PC-3) was observed 24 h after the PC-3 cells were treated with the CORM-2 micelles followed by ultrasound activation.  相似文献   

13.
Suspension culture is an essential large-scale cell culture technique for biopharmaceutical development and regenerative medicine. To transition from monolayer culture on the culture surface of a flask to suspension culture in a bioreactor, a pre-specified cell number must first be reached. During this period of preparation for suspension culture, static suspension culture in a flask is generally performed because the medium volume is not large enough to use a paddle to circulate the medium. However, drawbacks to this static method include cell sedimentation, leading to high cell density near the bottom and resulting in oxygen and nutrient deficiencies. Here, we propose a suspension culture method with acoustic streaming induced by ultrasonic waves in a T-flask to create a more homogeneous distribution of oxygen, nutrients, and waste products during the preparation period preceding large-scale suspension culture in a bioreactor. To demonstrate the performance of the ultrasonic method, Chinese hamster ovary cells were cultured for 72 h. Results showed that, on average, the cell proliferation was improved by 40% compared with the static method. Thus, the culture time required to achieve a 1000-fold increase could be reduced by 32 h (a 14% reduction) compared with the static method. Furthermore, the ultrasonic irradiation did not compromise the metabolic activity of the cells cultured using the ultrasonic method. These results demonstrate the effectiveness of the ultrasonic method for accelerating the transition to large-scale suspension culture.  相似文献   

14.
Recently, the low invasive cancer treatments with small aftereffects have been considered. We are studying on the suppression methods of cancer cell proliferation with ultrasound. Cancer cells of mouse T lymphoma (EL-4) have been used in our study. The human histitocytic lymphoma cells (U-937) was used in this time. The cancer cells were cultured in a culture medium of RPMI1640. The standing wave acoustic field was formed in a water tank of our ultrasound exposure system by a vibrating plate driven with a Langevine type transducer. The U-937 and EL-4 were exposed to ultrasound in the acoustic field with spatial average acoustic intensity of 350 mW/cm(2) at 150 kHz. The viable rate of EL-4 decreased with the lapse of culture time after ultrasound exposure. U-937 did not show the remarkable decrease tendency. The proliferation of U-937 which exposed to ultrasound with 700 mW/cm(2) was suppressed. It can be thought that apoptosis was induced in the cancer cells in this condition. We observed the morphological change on the U-937 exposed to ultrasound with this condition. The morphological changes by apoptosis like the shrink of cells, formation of apoptotic bodies etc. can be observed with an optical microscope and a phase contrast microscope.  相似文献   

15.
王安平  朱文杰 《发光学报》1993,14(3):292-298
东方弧菌518菌株于20℃摆床液体培养十六小时,菌数达最大,菌体内荧光素酶含量也较高,此时收获菌体.用超声波振动破碎细胞从中提取荧光酶粗液,经DEAE-纤维索和DEAE-sephadex柱层析得到纯化的酶.用葡聚糖凝胶层析法测得该酶分子量为87000道尔顿,用SDS-PAGE法测得该酶两个亚基分子量分别为44000(α)和41000(β). 该酶在pH6.8、18℃时活性最佳,对热不稳定.以FMNH2为底物催化发光反应,最高发射波长为490nm左右.其光谱特征与文献报道的东方孤菌整体发光的光谱相一致.  相似文献   

16.
Electron microscopic analysis of dairy microbes inactivated by ultrasound   总被引:3,自引:0,他引:3  
Ultrasonication is a non-thermal method of food preservation that has the advantage of inactivating microbes in food without causing the common side-effects associated with conventional heat treatments, such as nutrient and flavour loss. The aim of this study was to evaluate the use of ultrasound as an alternative to heat pasteurisation and to assess cell damage using transmission electron microscopy (TEM). Three spoilage microbes, previously isolated from pasteurised milk, were used as "test" microbes. Saline solution (SSS) and UHT milk were used as suspension media and were inoculated with exponential growth phase "test" microbes at a microbial concentration of 1 x 10(4) cfu ml(-1). The samples were subjected to power ultrasound (20 kHz, 750 W), at 100%/124 microm wave amplitude for different time intervals. Both Escherichia coli and Saccharomyces cerevisiae were reduced by >99% (for both suspension media) after ultrasonication and Lactobacillus acidophilus was reduced by 72% and 84% in SSS and milk, respectively. Transmission electron microscope micrographs showed that ultrasonication inflicts extensive microbicidal/microbistatic external and internal damage on all three "test" microbes. In E. coli, sonication-induced emulsification caused the formation of unique minute lipopolysaccharide vesicles from the fragmenting cell envelope.  相似文献   

17.
The ultrasonically induced cytotoxic effects of hematoporphyrin (Hp) on Hepatoma 22 (H22) cells in vitro and vivo were investigated. Tumor cells were suspended in saline and exposed to ultrasound at 1.43 MHz for up to 60s in the presence and absence of Hp. The viability of cells was evaluated by trypan blue exclusion test. The ultra-structure changes of H22 cells induced by ultrasonic irradiation were evaluated by scanning electron microscope (SEM) and transmission electron microscope (TEM). Lipid peroxidation in cell was estimated by the thiobarbicturic acid (TBA) method. Our experiments indicated that the ultrasonic intensity of 2 W/cm(2), the Hp concentration of 100 microg/ml and the ultrasound exposure time of 60s were the best conditions for sonodynamic treatment in vitro. The tumor volume and weight after the combination of Hp with ultrasound were remarkably inhibited. SEM and TEM observation found the cell ultra-structure was significantly damaged, and lipid peroxidation level remarkably increased after sonodynamic treatment. This study suggested the ultra-structural changes may play a key role in cell destruction induced by sonodynamic treatment and the biological mechanism might be involved in mediating the killing effect on H22 cells in our experiment mode.  相似文献   

18.
Shang Z  Gen S  Bai Y  Tian H 《Ultrasonics》2006,44(Z1):e251-e253
Tumor cells K562 were killed by the hematoporphyrin derivatives (HpD) activated by bi-frequency focal ultrasound in which a choice of irradiating parameter of ultrasound was tested by experiment. The effect of killing tumor cells was investigated by MTT method and compared with the contrast group. The results showed that the bi-frequency ultrasound exhibited an improved effect of killing tumor cells than single frequency ultrasound. It was 2-3 times higher than the single frequency ultrasound for the killing effect of tumor cells. After the irradiation of ultrasound, the cell-killing effect of hatching 16 h is better than that of hatching 4 h in the hatching tank. This might be due to delay of cell apoptosis.  相似文献   

19.
Influence of NH4NO3 in the pre-freeze and post-freeze culture medium and 2 or 30 day preconditioning in the presence of 0.5 M sucrose on regeneration of shoot tips of Holostemma annulare following cryopreservation using an encapsulation-dehydration protocol was studied. A long preconditioning phase of 30 days significantly reduced tissue water and improved post-freeze recovery of shoot tips. Under the long preconditioning treatment, Murashige & Skoog (MS) medium free of NH4NO3 (MS-3) allowed maximum regeneration (59%) of liquid nitrogen (LN) exposed shoot tips with less frequency of callusing (10.4%) after 45 days of post-freeze culture. Corresponding desiccated control shoot tips showed 85-90% regeneration. A 3.75 mM NH4NO3 concentration (MS-4) favoured 72-89% and 43-47% regeneration after desiccation and LN exposure respectively. The standard MS medium with 20.6 mM NH4NO3 (MS-1) allowed poor regeneration after desiccation (39-53%) as well as LN exposure (8-23%). The study reveals the importance of reducing ammonium nitrate in the culture medium to get maximum recovery of cryopreserved shoot tips of Holostemma annulare.  相似文献   

20.
Characterization of CO tolerance of PEMFC by ac impedance spectroscopy   总被引:1,自引:0,他引:1  
The CO tolerance of a proton exchange membrane fuel cell (PEMFC) was investigated by ac impedance spectroscopy. The impedance of the fuel cell could be obtained by feeding oxygen into the cathode side and simulated gas into anode side. Furthermore, the anode impedance could be obtained by feeding hydrogen into the cathode side and simulated gas into anode side. The CO gas had a greater effect on the charge transfer reaction (high frequency arc) and hydrogen dissociative chemisorption (medium frequency arc) but little effect on the low frequency arc. Although the cathode impedance is a main part at high temperature, irrespective of CO concentration (≤100 ppm), the impedance of the full cell depends on anode impedance at low temperature and high CO concentration. It was found that CO gas has little effect on cathode impedance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号