首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Functional MRI of motor and sensory activation in the human spinal cord   总被引:6,自引:0,他引:6  
MR imaging of the cervical spinal cord was carried out on volunteers during alternated rest and either motor or sensory stimulation of one hand, in order to detect image intensity changes arising concomitant to neuronal activity. We employed both spin-echo and gradient-echo echo-planar imaging, on the right and left hands, with both symmetric and asymmetric temporal patterns of rest and stimulation. Intensity changes correlated with the time course of stimulation were consistently detected, and the magnitude of the intensity changes depended on the duration of stimulation. The activated regions in the spinal cord extended along a column on the side of the body being stimulated and included localized regions on the contralateral side, in agreement with the neural anatomy.  相似文献   

2.

Background  

The localisation of AMPA and NMDA receptor subunits was studied in a model of degeneration of cervical spinal motoneurons, the wobbler mouse. Cervical regions from early or late symptomatic wobbler mice (4 or 12 weeks of age) were compared to lumbar tracts (unaffected) and to those of healthy mice.  相似文献   

3.
Patient and physiological motion can cause artifacts in DTI of the spinal cord which can impact image quality and diffusion indices. The purpose of this investigation was to determine a reliable motion correction method for pediatric spinal cord DTI and show effects of motion correction on DTI parameters in healthy subjects and patients with spinal cord injury. Ten healthy subjects and ten subjects with spinal cord injury were scanned using a 3 T scanner. Images were acquired with an inner field-of-view DTI sequence covering cervical spine levels C1 to C7. Images were corrected for motion using two types of transformation (rigid and affine) and three cost functions. Corrected images and transformations were examined qualitatively and quantitatively using in-house developed code. Fractional anisotropy (FA) and mean diffusivity (MD) indices were calculated and tested for statistical significance pre- and post- motion correction. Images corrected using rigid methods showed improvements in image quality, while affine methods frequently showed residual distortions in corrected images. Blinded evaluation of pre and post correction images showed significant improvement in cord homogeneity and edge conspicuity in corrected images (p < 0.0001). The average FA changes were statistically significant (p < 0.0001) in the spinal cord injury group, while healthy subjects showed less FA change and were not significant. In both healthy subjects and subjects with spinal cord injury, quantitative and qualitative analysis showed the rigid scaled-least-squares registration technique to be the most reliable and effective in improving image quality.  相似文献   

4.
The potential of the manganese-enhanced MRI (MEI) technique in labeling the intact neuronal circuitry of rat spinal cord was examined. Experiments were conducted on normal and injured cords at 9.4-T magnetic field strength using an implantable rf coil. The contrast agent manganese (Mn) was locally delivered within the parenchyma at a dose of 25 mmol/L in 10 nL. The transport, uptake and accumulation of Mn in tissue were then followed remotely on T1-weighted images that were acquired serially from the cord. In MEIs of normal cord, Mn was observed to be transported in directions both rostral and caudal to the site of injection. In the cord that was subjected to hemisection, signal enhancement was on the contralesional side of the cord, but not at the ipsilesional side. The sensitivity and specificity of the MEI technique in labeling the neurons that are functional were also validated with a traditional track-tracing method using biotinylated dextran amine.  相似文献   

5.
In the traumatically injured spinal cord, decreased perfusion is believed to contribute to secondary tissue damage beyond the primary mechanical impact, and restoration of perfusion is believed to be a promising therapeutic target. However, methods to monitor spinal cord perfusion non-invasively are limited. Perfusion magnetic resonance imaging (MRI) techniques established for the brain have not been routinely adopted to the spinal cord. The purpose of this study was to examine the relationship between spinal cord blood flow (SCBF) and injury severity in a rat thoracic spinal cord contusion injury (SCI) model using flow-sensitive alternating inversion recovery (FAIR) with two variants of the label position. SCBF as a marker of severity was compared to T1 mapping and to spinal cord-optimized diffusion weighted imaging (DWI) with filtered parallel apparent diffusion coefficient. Thirty-eight rats underwent a T10 contusion injury with varying severities (8 sham; 10 mild; 10 moderate; 10 severe) with MRI performed at 1 day post injury at the lesion site and follow-up neurological assessments using the Basso, Beattie, Bresnahan (BBB) locomotor scoring up to 28 days post injury. Using whole-cord regions of interest at the lesion epicenter, SCBF was decreased with injury severity and had a significant correlation with BBB scores at 28 days post injury. Importantly, estimates of arterial transit times (ATT) in the injured spinal cord were not altered after injury, which suggests that FAIR protocols optimized to measure SCBF provide more value in the context of acute traumatic injury to the cord. T1-relaxation time constants were strongly related to injury severity and had a larger extent of changes than either SCBF or DWI measures. These findings suggest that perfusion decreases in the spinal cord can be monitored non-invasively after injury, and multi-parametric MRI assessments of perfusion, diffusion, and relaxation capture unique features of the pathophysiology of preclinical injury.  相似文献   

6.
In vivo echo-planar imaging of rat spinal cord   总被引:1,自引:0,他引:1  
An integrated approach to echo-planar imaging of rat spinal cord in vivo with a small field of view (FOV) is presented. This protocol is based on a multishot interleaved echo-planar imaging (EPI) sequence and includes: 1) use of an inductively coupled implantable coil for improved signal-to-noise ratio (SNR); 2) three-dimensional (3D) automatic shimming of the magnetic field over the spinal cord; and 3) post-acquisition data processing using a multireference scan for minimizing image artifacts. Some of the practical issues in implementing this protocol are discussed. This imaging protocol will be useful in characterizing the spinal cord pathology using techniques that are otherwise time-consuming, such as diffusion tensor imaging.  相似文献   

7.

Background  

Previous studies found that rats subjected to carrageenan injection develop hyperalgesia, and despite complete recovery in several days, they continue to have an enhanced hyperalgesic response to a new noxious challenge for more than 28d. The study's aim was to identify candidate genes that have a role in the formation of the long-term hyperalgesia-related imprint in the spinal cord. This objective was undertaken with the understanding that the long-lasting imprint of acute pain in the central nervous system may contribute to the transition of acute pain to chronicity.  相似文献   

8.
Although event-related fMRI is able to reliably detect brief changes in brain activity and is now widely used throughout systems and cognitive neuroscience, there have been no previous reports of event-related spinal cord fMRI. This is likely attributable to the various technical challenges associated with spinal fMRI (e.g., imaging a suitable length of the cord, reducing image artifacts from the vertebrae and intervertebral discs, and dealing with physiological noise from spinal cord motion). However, with many of these issues now resolved, the largest remaining impediment for event-related spinal fMRI is a deprived understanding of the spinal cord fMRI signal time course. Therefore, in this study, we used a proton density-weighted HASTE sequence, with functional contrast based on signal enhancement by extravascular water protons (SEEP), and a motion-compensating GLM analysis to (i) characterize the SEEP response function in the human cervical spinal cord and (ii) demonstrate the feasibility of event-related spinal fMRI. This was achieved by applying very brief (1 s) epochs of 22°C thermal stimulation to the palm of the hand and measuring the impulse response function. Our results suggest that the spinal cord SEEP response (time to peak ≈8 s; FWHM ≈4 s; and probably lacking pre- and poststimulus undershoots) is slower than previous estimates of SEEP or BOLD responses in the brain, but faster than previously reported spinal cord BOLD responses. Finally, by detecting and mapping consistent signal-intensity changes within and across subjects, and validating these regions with a block-designed experiment, this study represents the first successful demonstration of event-related spinal fMRI.  相似文献   

9.
Magnetic resonance imaging (MRI) has recently been applied to study spinal cord function in humans. However, spinal functional MRI (fMRI) encounters major technical challenges with cardiac noise being considered a major source of noise. The present study relied on echo-planar imaging of the cervical cord at short TR (TR=250 ms; TE=40 ms; flip=45 degrees), combined with plethysmographic recordings to characterize the spatiotemporal properties of cardiac-induced signal changes in spinal fMRI. Frequency-based analyses examining signal change at the cardiac frequency confirmed mean fluctuations of about 10% (relative to the mean signal) in the spinal cord and surrounding cerebrospinal fluid (CSF), with maximal responses reaching up to 66% in some voxels. A spatial independent component analysis (sICA) confirmed that cardiac noise is an important source of variance in spinal fMRI with several components showing a response coherent with the cardiac frequency spectrum. The time course of the main cardiac components approximated a sinusoidal function tightly coupled to the cardiac systole with at least one component showing a comparable temporal profile across runs and subjects. Spatially, both the frequency-domain analysis and the sICA demonstrated cardiac noise distributed irregularly along the full rostrocaudal extent of the segments scanned with peaks concentrated in the ventral part of the lateral slices in all scans and subjects, consistent with the major channels of CSF flow. These results confirm that cardiac-induced changes are a significant source of noise likely to affect the detection of spinal Blood Oxygen Level Dependent (BOLD) responses. Most importantly, the complex spatiotemporal structure of cardiac noise is unlikely to be accounted for adequately by ad hoc linear methods, especially in data acquired using long TR (i.e. aliasing the cardiac frequency). However, the reliable spatiotemporal distribution of cardiac noise across scanning runs and within subjects may provide a valid means to identify and extract cardiac noise based on sICA methods.  相似文献   

10.
Functional magnetic resonance imaging of the spinal cord (spinal fMRI) has facilitated the noninvasive visualization of neural activity in the spinal cord (SC) and brainstem of both animals and humans. This technique has yet to gain the widespread usage of brain fMRI, due in part to the intrinsic technical challenges spinal fMRI presents and to the narrower scope of applications it fulfills. Nonetheless, methodological progress has been considerable and rapid. To date, spinal fMRI studies have investigated SC function during sensory or motor task paradigms in spinal cord injury (SCI), multiple sclerosis (MS) and neuropathic pain (NP) patient populations, all of which have yielded consistent and sensitive results. The most recent study in our laboratory has successfully used spinal fMRI to examine cervical SC activity in a SCI patient with a metallic fixation device spanning the C4 to C6 vertebrae, a critical step in realizing the clinical utility of the technique. The literature reviewed in this article suggests that spinal fMRI is poised for usage in a wide range of patient populations, as multiple groups have observed intriguing, yet consistent, results using standard, readily available MR systems and hardware. The next step is the implementation of this technique in the clinic to supplement standard qualitative behavioral assessments of SCI. Spinal fMRI may offer insight into the subtleties of function in the injured and diseased SC, and support the development of new methods for treatment and monitoring.  相似文献   

11.
A rare complication of irradiation is reported of a ten-year-old boy who had been treated by supervoltage irradiation following decompressive-laminectomy for his primary spinal cord neoplasm.

He probably received average dose of (4500) rads to a limited segment of his duodenum, within the six weeks. He developed this complication nine months after the completion of treatment. The dose-time-volume factors are considcred sufficient enough to produce such complications, however, there were apparent contributory factors such as unusual duodenal fixation and duodeno-jejunal ligament foreshortening.  相似文献   

12.
Noninvasive functional studies on human spinal cord by means of magnetic resonance imaging (MRI) are gaining attention because of the promising applications in the study of healthy and injured central nervous system. The findings obtained are generally consistent with the anatomic knowledge based on invasive methods, but the origin and specificity of functional contrast is still debated. In this paper, a review of current knowledge and major issues about functional MRI (fMRI) in the human spinal cord is presented, with emphasis on the main methodological and technical problems and on forthcoming applications as clinical tool.  相似文献   

13.

Background  

Transplantation of oligodendrocyte precursor cells (OPCs) is an attractive therapy for demyelinating diseases. Cyclosporin A (CsA) is one of the foremost immunosuppressive agents and has widespread use in tissue and cell transplantation. However, whether CsA affects survival and differentiation of engrafted OPCs in vivo is unknown. In this study, the effect of CsA on morphological, functional and immunological aspects, as well as survival and differentiation of engrafted OPCs in injured spinal cord was explored.  相似文献   

14.
In vivo diffusion characteristics of rat spinal cord.   总被引:2,自引:0,他引:2  
Complete apparent diffusion tensor (ADTs) of spinal cord was measured in vivo in nine rats at 2.0 T. Two rotationally invariant parameters, the trace, which is a measure of the mean diffusivity, and the lattice index (LI), which reflects the degree of orientation coherence of tissue, have been estimated from the ADT. The mean white matter (WM) trace value (3.05 +/- 0.26 mm2/sec) was found to be substantially higher than the gray matter (GM) trace (2.36 +/- 0.39 mm2/sec), in contrast with the published results on fixed, excised cord. Statistically significant anisotropic diffusion was observed in both WM and GM, with greater anisotropy in the WM (LI = 0.67 +/- 0.06) than in the GM (LI = 0.51 +/- 0.05).  相似文献   

15.

Background and Purpose

Susceptibility weighted imaging (SWI) is sensitive to deoxyhemoglobin and blood products such as hemosiderin in detecting microbleeds in the brain. However, there are no studies on SWI in the spine cord injury so far. The purpose of this study was to evaluate the role of SWI in detecting hemorrhage in acute cervical spinal cord injury (SCI).

Materials and Methods

Twenty-three patients with a history of acute cervical spine trauma were studied. High-resolution SWI, gradient-echo (GRE) T2* weighted-image (T2*WI) and conventional magnetic resonance imaging (MRI) were performed on all patients within 15 days of the onset of injury. On the basis of the MRI findings, the patients were classified into four patterns: normal cord, spinal cord edema, spinal cord contusion and spinal cord hemorrhage. Quantitative analysis was performed by calculating and comparing the signal ratio of the hemorrhage to normal spinal cord on the same slice of T2*WI and SWI. All patients were clinically evaluated in follow-up. Twenty volunteers were also scanned as a control group.

Results

Out of 23 patients with a history of acute cervical spine trauma, 4 patients showed normal spinal cord on both conventional MRI and SWI, 8 had only spinal cord edema and 5 had contusion on conventional MRI, but SWI showed hemorrhage in 2 of the 5 patients with spinal contusion on conventional MRI; the other 6 patients had intraspinal hemorrhage on conventional MRI, and SWI proved hemorrhage in all these 6 patients. There was a significant difference between the signal ratios of hemorrhage to normal tissue on T2*WI and SWI (Z=2.34, P=.02).

Conclusion

Susceptibility weighted imaging is more sensitive than conventional MRI in detecting hemorrhage in acute cervical SCI. This technique could prove to be a useful tool in the routine evaluation of cervical SCI patients.  相似文献   

16.

Background  

Mesenchymal stem cells are widely used for transplantation into the injured spinal cord in vivo model and for safety, many human clinical trials are continuing to promote improvements of motor and sensory functions after spinal cord injury. Yet the exact mechanism for these improvements remains undefined. Neurogenic bladder following spinal cord injury is the main problem decreasing the quality of life for patients with spinal cord injury, but there are no clear data using stem cell transplantation for the improvement of neurogenic bladder for in vivo studies and the clinical setting.  相似文献   

17.

Background  

Tetramethylpyrazine (TMP) is one of the most important active ingredients of a Chinese herb Ligusticum wallichii Franchat, which is widely used in many ischemia disorders treatments. However, the exact mechanism by which TMP protects the spinal cord ischemia/reperfusion (I/R) injury is still unknown. For this purpose, rabbits were randomly divided into sham group, control group and TMP group. After the evaluation of neurologic function, the spinal cords were immediately removed for biochemical and histopathological analysis. Apoptosis was measured quantitatively by the terminal transferase UTP nick end-labeling (TUNEL) method and confirmed by electron microscopic examination, the expression of Bax and Bcl-2 was immunohistochemically evaluated and quantified by Western blot analysis.  相似文献   

18.
A conventional spin-echo NMR imaging pulse sequence was used to obtain high-resolution images of excised normal rat spinal cord at 7 and 14 T. It was observed that the large pulsed-field gradients necessary for high-resolution imaging caused a diffusion weighting that dominated the image contrast and that could be used to infer microscopic structural organization beyond that defined by the resolution of the image matrix (i.e., fiber orientation could be assigned based on diffusion anisotropy). Anisotropic diffusion coefficients were therefore measured using apparent diffusion tensor (ADT) imaging to assess more accurately fiber orientations in the spinal cord; structural anisotropy information is portrayed in the six unique images of the complete ADT. To reduce the dimensionality of the data, a trace image was generated using a separate color scale for each of the three diagonal element images of the ADT. This new image retains much of the invariance of the trace to the relative orientations of laboratory and sample axes (inherent to a greyscale trace image) but provides, by the use of color, contrast reflecting diffusion anisotropy. The colored trace image yields a pseudo-three-dimensional view of the rat spinal cord, from which it is possible to deduce fiber orientations.  相似文献   

19.

Background  

It has been postulated that exercise-induced activation of brain-derived neurotrophic factor (BDNF) may account for improvement of stepping ability in animals after complete spinal cord transection. As we have shown previously, treadmill locomotor exercise leads to up-regulation of BDNF protein and mRNA in the entire neuronal network of intact spinal cord. The questions arise: (i) how the treadmill locomotor training, supplemented with tail stimulation, affects the expression of molecular correlates of synaptic plasticity in spinal rats, and (ii) if a response is related to BDNF protein level and distribution.  相似文献   

20.
In vivo relaxation times and relative spin densities of gray matter (GM) and white matter (WM) of rat spinal cord were measured. Inductively coupled implanted RF coil was used to improve the signal-to-noise ratio required for making these measurements. The estimated relaxation times (in milliseconds) are: T1(GM) = 1021+/-93, T2(GM) = 64+/-3.4, T1(WM) = 1089+/-126, and T2(WM) = 79+/-6.9. The estimated relative spin densities are: rho(GM) = (60+/-2.3)% and rho(WM) = (40+/-2.1)%. The T1 values of GM and white matter are not statistically different. However, the differences in T2 values and spin densities of GM and WM are statistically significant. These in vivo measurements indicate that the observed contrast between GM and WM in spinal cord MR images mainly arises from the differences in the spin density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号