共查询到20条相似文献,搜索用时 15 毫秒
1.
Given a rectangular array whose entries represent the pixels of a digitalized image, we consider the problem of reconstructing an image from the number of occurrences of each color in every column and in every row. The complexity of this problem is still open when there are just three colors in the image. We study some special cases where the number of occurrences of each color is limited to small values. Formulations in terms of edge coloring in graphs and as timetabling problems are used; complexity results are derived from the model. 相似文献
2.
We consider the problem of coloring a grid using p colors with the requirement that each row and each column has a specific total number of entries of each color.Ryser (1957) [20], and independently Gale (1957) [10], obtained a necessary and sufficient condition for the existence of such a coloring when two colors are considered. This characterization yields a linear-time algorithm for constructing the coloring when it exists. Later, Gardner et al. (2000) [11], and Chrobak and Dürr (2001) [5], showed that the problem is NP-hard when p?7 and p?4, respectively.The case p=3 was an open problem for several years and has been recently settled by Dürr et al. (2009) [9]: it is NP-hard too. This grid coloring problem is equivalent to finding disjoint realizations of two degree sequences d1,d2 in a complete bipartite graph KX,Y. These kinds of questions are well studied when one of the degree sequences has span zero or one, where the span of a function is the difference between its maximum and its minimum values. In [4], Chen and Shastri (1989) showed a necessary and sufficient condition for the existence of a coloring when d1+d2 restricted to X or Y has span at most one. In terms of discrete tomography this latter condition means that for two colors, the sum of the number of occurrences of these colors in each row is k or k+1, for some integer k.In the present paper we prove an analog to Chen and Shastri’s characterization when d1+d2 restricted to X and to Y has span at most two. That is, there exist integers k1 and k2 such that the sum of the number of occurrences of two of the colors in each row is k1−1,k1 or k1+1, and in each column is k2−1,k2 or k2+1. Our characterization relies on a new natural condition called the total saturation condition which, when not satisfied, gives a non-existence certificate of such a coloring that can be checked in polynomial time. 相似文献
3.
4.
Nigel Martin 《Discrete Mathematics》2006,306(17):2084-2090
We construct a new infinite family of factorizations of complete bipartite graphs by factors all of whose components are copies of a (fixed) complete bipartite graph Kp,q. There are simple necessary conditions for such factorizations to exist. The family constructed here demonstrates sufficiency in many new cases. In particular, the conditions are always sufficient when q=p+1. 相似文献
5.
Incidence coloring of a graph G is a mapping from the set of incidences to a color-set C such that adjacent incidences of G are assigned distinct colors. Since 1993, numerous fruitful results as regards incidence coloring have been proved. However, some of them are incorrect. We remedy the error of the proof in [R.A. Brualdi, J.J.Q. Massey, Incidence and strong edge colorings of graphs, Discrete Math. 122 (1993) 51-58] concerning complete bipartite graphs. Also, we give an example to show that an outerplanar graph with Δ=4 is not 5-incidence colorable, which contradicts [S.D. Wang, D.L. Chen, S.C. Pang, The incidence coloring number of Halin graphs and outerplanar graphs, Discrete Math. 256 (2002) 397-405], and prove that the incidence chromatic number of the outerplanar graph with Δ≥7 is Δ+1. Moreover, we prove that the incidence chromatic number of the cubic Halin graph is 5. Finally, to improve the lower bound of the incidence chromatic number, we give some sufficient conditions for graphs that cannot be (Δ+1)-incidence colorable. 相似文献
6.
It is proved here that any edge-coloring critical graph of order n and maximum degree Δ?8 has the size at least 3(n+Δ−8). It generalizes a result of Hugh Hind and Yue Zhao. 相似文献
7.
8.
9.
Dominique de Werra Marie-Christine Costa C. Picouleau Bernard Ries 《Annals of Operations Research》2010,175(1):287-307
In this tutorial paper, we consider the basic image reconstruction problem which stems from discrete tomography. We derive
a graph theoretical model and we explore some variations and extensions of this model. This allows us to establish connections
with scheduling and timetabling applications. The complexity status of these problems is studied and we exhibit some polynomially
solvable cases. We show how various classical techniques of operations research like matching, 2-SAT, network flows are applied
to derive some of these results. 相似文献
10.
A graph G is dot-critical if contracting any edge decreases the domination number. Nader Jafari Rad (2009) [3] posed the problem: Is it true that a connected k-dot-critical graph G with G′=0? is 2-connected? In this note, we give a family of 1-connected 2k-dot-critical graph with G′=0? and show that this problem has a negative answer. 相似文献
11.
B. Ries 《Discrete Applied Mathematics》2010,158(5):592-596
In this note we consider two coloring problems in mixed graphs, i.e., graphs containing edges and arcs, which arise from scheduling problems where disjunctive and precedence constraints have to be taken into account. We show that they are both NP-complete in cubic planar bipartite mixed graphs, which strengthens some results of Ries and de Werra (2008) [9]. 相似文献
12.
If the edges of a graph G are colored using k colors, we consider the color distribution for this coloring a=(a1,a2,…,ak), in which ai denotes the number of edges of color i for i=1,2,…,k. We find inequalities and majorization conditions on color distributions of the complete bipartite graph Kn,n which guarantee the existence of multicolored subgraphs: in particular, multicolored forests and trees. We end with a conjecture on partitions of Kn,n into multicolored trees. 相似文献
13.
Some results on integral sum graphs 总被引:1,自引:0,他引:1
Let Z denote the set of all integers. The integral sum graph of a finite subset S of Z is the graph (S,E) with vertex set S and edge set E such that for u,vS, uvE if and only if u+vS. A graph G is called an integral sum graph if it is isomorphic to the integral sum graph of some finite subset S of Z. The integral sum number of a given graph G, denoted by ζ(G), is the smallest number of isolated vertices which when added to G result in an integral sum graph. Let x denote the least integer not less than the real x. In this paper, we (i) determine the value of ζ(Kn−E(Kr)) for r2n/3−1, (ii) obtain a lower bound for ζ(Kn−E(Kr)) when 2r<2n/3−1 and n5, showing by construction that the bound is sharp when r=2, and (iii) determine the value of ζ(Kr,r) for r2. These results provide partial solutions to two problems posed by Harary (Discrete Math. 124 (1994) 101–108). Finally, we furnish a counterexample to a result on the sum number of Kr,s given by Hartsfiedl and Smyth (Graphs and Matrices, R. Rees (Ed.), Marcel, Dekker, New York, 1992, pp. 205–211). 相似文献
14.
For any vertex u∈V(G), let T_N(U)={u}∪{uv|uv∈E(G), v∈v(G)}∪{v∈v(G)|uv∈E(G)}and let f be a total k-coloring of G. The total-color neighbor of a vertex u of G is the color set C_f(u)={f(x)|x∈TN(U)}. For any two adjacent vertices x and y of V(G)such that C_f(x)≠C_f(y), we refer to f as a k-avsdt-coloring of G(avsdtis the abbreviation ofadjacent-vertex-strongly- distinguishing total). The avsdt-coloring number of G, denoted by X_(ast)(G), is the minimal number of colors required for a avsdt-coloring of G. In this paper, the avsdt-coloring numbers on some familiar graphs are studied, such as paths, cycles, complete graphs, complete bipartite graphs and so on. We proveΔ(G) 1≤X_(ast)(G)≤Δ(G) 2 for any tree or unique cycle graph G. 相似文献
15.
In this paper we discuss some basic properties of k-list critical graphs. A graph G is k-list critical if there exists a list assignment L for G with |L(v)|=k−1 for all vertices v of G such that every proper subgraph of G is L-colorable, but G itself is not L-colorable. This generalizes the usual definition of a k-chromatic critical graph, where L(v)={1,…,k−1} for all vertices v of G. While the investigation of k-critical graphs is a well established part of coloring theory, not much is known about k-list critical graphs. Several unexpected phenomena occur, for instance a k-list critical graph may contain another one as a proper induced subgraph, with the same value of k. We also show that, for all 2≤p≤k, there is a minimal k-list critical graph with chromatic number p. Furthermore, we discuss the question, for which values of k and n is the complete graph Knk-list critical. While this is the case for all 5≤k≤n, Kn is not 4-list critical if n is large. 相似文献
16.
A graph theoretical model is presented for constructing calendars for sports leagues where balancing requirement have to be considered with respect to the different venues where competitions are to be located. An inductive construction is given for leagues having a number of teams 2n which is of the form 2p in particular. 相似文献
17.
Carl Johan Casselgren 《Discrete Mathematics》2011,(13):168
Let Ks×m be the complete multipartite graph with s parts and m vertices in each part. Assign to each vertex v of Ks×m a list L(v) of colors, by choosing each list uniformly at random from all 2-subsets of a color set C of size σ(m). In this paper we determine, for all fixed s and growing m, the asymptotic probability of the existence of a proper coloring φ, such that φ(v)∈L(v) for all v∈V(Ks×m). We show that this property exhibits a sharp threshold at σ(m)=2(s−1)m. 相似文献
18.
Discrete tomography deals with the reconstruction of images from their projections where the images are assumed to contain only a small number of grey values. In particular, there is a strong focus on the reconstruction of binary images (binary tomography). A variety of binary tomography problems have been considered in the literature, each using different projection models or additional constraints. In this paper, we propose a generic iterative reconstruction algorithm that can be used for many different binary reconstruction problems. In every iteration, a subproblem is solved based on at most two of the available projections. Each of the subproblems can be solved efficiently using network flow methods. We report experimental results for various reconstruction problems. Our results demonstrate that the algorithm is capable of reconstructing complex objects from a small number of projections. 相似文献
19.
Manu Basavaraju 《Discrete Mathematics》2009,309(13):4646-649
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic (2-colored) cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a′(G). Let Δ=Δ(G) denote the maximum degree of a vertex in a graph G. A complete bipartite graph with n vertices on each side is denoted by Kn,n. Alon, McDiarmid and Reed observed that a′(Kp−1,p−1)=p for every prime p. In this paper we prove that a′(Kp,p)≤p+2=Δ+2 when p is prime. Basavaraju, Chandran and Kummini proved that a′(Kn,n)≥n+2=Δ+2 when n is odd, which combined with our result implies that a′(Kp,p)=p+2=Δ+2 when p is an odd prime. Moreover we show that if we remove any edge from Kp,p, the resulting graph is acyclically Δ+1=p+1-edge-colorable. 相似文献
20.