共查询到19条相似文献,搜索用时 78 毫秒
1.
使用密度泛函方法研究了以二乙基锌(DEZn)和H2S作为前驱体在硅表面原子层沉积ZnS的初始反应机理.ZnS薄膜的原子层沉积包括2个连续的"半反应":即DEZn与H2S"半反应".研究显示:DEZn与H2S"半反应"都经历了一个C2H6消去过程.通过对比在单硫氢基及双硫氢基硅表面上的反应,发现邻位硫氢基的存在有利于前驱体分子的吸附并能够降低反应活化能,这意味着双硫氢基硅表面上的反应是能量上更有利的反应.另外,也发现DEZn"半反应"比H2S"半反应"更容易进行. 相似文献
2.
用密度泛函方法研究了ZrO2在羟基预处理的Si(100)-2×1表面原子层淀积(ALD)初始反应过程的反应机理, ZrO2的ALD过程包括两个前体反应物ZrCl4和H2O交替的半反应. 两个半反应都经历一个相似的吸附中间体反应路径. 比较单羟基Si表面反应的反应焓变, 可以发现双羟基Si表面反应, 由于相邻羟基的存在, 对ZrCl4的半反应影响较大, 尤其是化学吸附能增加明显. 而对于H2O的半反应, 单、双羟基Si表面反应的能量变化不是很明显. 使用内禀反应坐标(IRC)方法, 验证了两个半反应存在相似的过渡态结构和反应机理. 另外, 发现随着温度的升高, 吸附络合物的稳定性降低, 其向反应物方向的解吸附变得容易, 而向产物方向的解离难度增加. 相似文献
3.
用密度泛函方法研究了ZrO2在羟基预处理的Si(100)-2×1表面原子层淀积(ALD)初始反应过程的反应机理, ZrO2的ALD过程包括两个前体反应物ZrCl4和H2O交替的半反应. 两个半反应都经历一个相似的吸附中间体反应路径. 比较单羟基Si表面反应的反应焓变, 可以发现双羟基Si表面反应, 由于相邻羟基的存在, 对ZrCl4的半反应影响较大, 尤其是化学吸附能增加明显. 而对于H2O的半反应, 单、双羟基Si表面反应的能量变化不是很明显. 使用内禀反应坐标(IRC)方法, 验证了两个半反应存在相似的过渡态结构和反应机理. 另外, 发现随着温度的升高, 吸附络合物的稳定性降低, 其向反应物方向的解吸附变得容易, 而向产物方向的解离难度增加. 相似文献
4.
利用原子层沉积技术(ALD)合成了铁酸锌(ZnFe2O4)纳米颗粒。基于密度泛函理论和原子热力学的方法,计算了ZnFe2O4的结构、磁性和电子性质,研究了ZnFe2O4(311)面六种不同终结面的稳定性与氧化学势和锌化学势的关系。结果表明,ZnFe2O4是具有正尖晶石结构的半导体,禁带宽度为1.91 eV,且具有反铁磁性。在ZnFe2O4可以稳定存在的化学势范围内,O1、O2、Fe2、Zn2四种终结面可以稳定存在,且具有不同的稳定区间。在富锌条件下(△μZn=0 eV),O1终结面在大部分O化学势范围内最稳定,在贫锌条件下(△μZn=-3.88 eV),O2终结面变得最稳定。 相似文献
5.
采用密度泛函理论研究了吸附有O原子的Au(111)表面上乙醇选择性氧化的反应机理.反应结果表明,除O原子和中间产物二齿醋酸根(CH3CHOO)外,其他中间产物在Au(111)表面扩散能垒均较低,不会对反应速控步骤的确定造成影响.乙醇羟基氧化脱氢为反应的第一步骤,当氧化剂为吸附态的O原子或者为OH基时,反应活化能分别为0.20和0.17eV.氧化产物乙氧基(CH3CH2O)进一步氧化脱氢生成乙醛则需要表面吸附的O原子或另一表面吸附的OH基的参与,所需活化能为0.29或0.27eV.同时,乙醛易与表面吸附的乙氧基反应生成乙氧基半缩醛(CH3CHOOC2H5),其可进一步与O原子作用,脱氢形成乙酸乙酯.此外,在乙醛深度氧化成酸的过程中需要克服较高的反应能垒,因而在表面反应温度较低时无法进行,这与实验结果相符. 相似文献
6.
7.
采用密度泛函理论对噻吩分子在Ni(100),Cu(100)和Co(100)表面的吸附构型进行了GGA/PBE水平上的计算,通过比较吸附能及各结构参数,预测了各金属的脱硫活性.结果表明:噻吩在Ni表面发生了作用力较强的化学吸附,噻吩的S—C键有解离趋势;在Cu表面发生的是作用力较弱的物理吸附,噻吩分子构型并未发生较大变化;而噻吩在Co表面的吸附作用最强,噻吩的S—C键已经发生解离,和Co原子之间的距离已经达到甚至短于Co—S键的键长.这说明,金属的吸附脱硫活性为CoNiCu,与实验研究结果一致.此3种金属最稳定的分子吸附位均为hol45位. 相似文献
8.
9.
利用密度泛函理论系统研究了贵金属原子(Au、Pd、Pt和Rh)在CeO2(111)表面的吸附行为。结果表明,Au吸附在氧顶位最稳定,Pd、Pt倾向吸附于氧桥位,而Rh在洞位最稳定。当金属原子吸附在氧顶位时,吸附强度依次为Pt > Rh > Pd > Au。Pd、Pt与Rh吸附后在Ce 4f、O 2p电子峰间出现掺杂峰;Au未出现掺杂电子峰,其d电子峰与表面O 2p峰在-4~-1 eV重叠。态密度分析表明,Au吸附在氧顶位、Pd与Pt吸附在桥位、Rh吸附在洞位时,金属与CeO2(111)表面氧原子作用较强,这与Bader电荷分析结果相一致。 相似文献
10.
通过密度泛函理论的第一性原理,模拟了CO2分子在SrTiO3(100)表面TiO2-和SrO-位点上的吸附行为,获得了CO2在几种不同吸附模型下的结构参数及表面吸附能,进而研究了吸附机理和结构稳定性.计算结果表明,当CO2的C原子吸附在SrTiO3(100)表面SrO-及TiO2-位点的氧原子上时,吸附结构较稳定,尤其是C、O原子共吸附在TiO2-位点时最稳定,而其余吸附模型则不稳定.对吸附稳定模型的Mulliken布局数及态密度分析显示:CO2分子在SrTiO3(100)表面吸附主要是由于SrTiO3(100)面的电子跃迁至CO2分子,CO2分子得到电子形成弯曲的CO2-阴离子结构,并伴随着C-O键的伸长,从而达到吸附活化CO2的目的. 相似文献
11.
实验上捕获到C100(417)Cl28,但其形成机理仍不清楚。本文采用密度泛函理论(DFT)方法研究了生成C100(417)Cl28的反应机理,考虑了可能的经Stone-Wales (SW)转化、直接氯化和来自于骨架转变等反应路径。结果表明:C100(417)Cl28形成的最主要来源是通过C102(603)骨架转变,即经历氯化、C2失去和SW转变而来。该结果能很好解释实验结果,对富勒烯氯化物的合成提供了理论依据。 相似文献
12.
在Rh(111)面上NO+CO反应机理的密度泛函理论研究 总被引:1,自引:0,他引:1
应用基于密度泛函理论赝势平面波方法的CASTEP程序, 对Rh(111)上的NO+CO反应机理进行研究. 对于反应中的各个关键步骤: NO离解、CO2生成、通过N2O离解生成N2以及通过N+N反应生成N2都进行了详细讨论, 计算得到各反应步骤的过渡态以及活化能, 从而确立了各步骤的反应路径. 相似文献
13.
利用密度泛函理论研究了γ-Mo2N(100)表面上的噻吩加氢脱硫(HDS)过程.噻吩在γ-Mo2N(100)表面上不同作用形式的结构优化结果显示,η5-Mo2N吸附构型最稳定,具有最大的吸附能(-0.56 eV),此时噻吩通过S原子与Mo2原子相连平行表面吸附在四重空位(hcp位).H原子和噻吩在hcp位发生稳定共吸附,hcp位是噻吩HDS的活性位点.噻吩在γ-Mo2N(100)表面进行直接脱硫反应,HDS过程分为S原子脱除和C4产物加氢饱和两部分.过渡态搜索确定了HDS最可能的反应机理及中间产物,首个H原子的反应需要最大的活化能(1.69 eV),是噻吩加氢脱硫的控速步骤.伴随H原子的不断加入,噻吩在γ-Mo2N(100)表面上优先生成―SH和丁二烯,随后―SH加氢生成H2S,丁二烯加氢饱和生成2-丁烯和丁烷.由于较弱的吸附,H2S、2-丁烯和丁烷很容易在γ-Mo2N(100)表面脱附成为产物. 相似文献
14.
利用密度泛函理论研究了γ-Mo2N(100)表面上的噻吩加氢脱硫(HDS)过程. 噻吩在γ-Mo2N(100)表面上不同作用形式的结构优化结果显示, η5-Mo2N吸附构型最稳定, 具有最大的吸附能(-0.56 eV), 此时噻吩通过S原子与Mo2原子相连平行表面吸附在四重空位(hcp 位). H原子和噻吩在hcp位发生稳定共吸附, hcp位是噻吩HDS的活性位点. 噻吩在γ-Mo2N(100)表面进行直接脱硫反应, HDS过程分为S原子脱除和C4产物加氢饱和两部分. 过渡态搜索确定了HDS最可能的反应机理及中间产物, 首个H原子的反应需要最大的活化能(1.69 eV),是噻吩加氢脱硫的控速步骤. 伴随H原子的不断加入, 噻吩在γ-Mo2N(100)表面上优先生成―SH和丁二烯, 随后―SH加氢生成H2S, 丁二烯加氢饱和生成2-丁烯和丁烷. 由于较弱的吸附, H2S、2-丁烯和丁烷很容易在γ-Mo2N(100)表面脱附成为产物. 相似文献
15.
甲醛在CeO2(111)表面吸附的密度泛函理论研究 总被引:3,自引:1,他引:3
采用基于第一性原理的密度泛函理论和周期平板模型, 研究了甲醛在以桥氧为端面的CeO2(111)稳定表面上的吸附行为. 通过对不同覆盖度, 不同吸附位的甲醛吸附构型、吸附能及电子态密度的分析发现, 甲醛在CeO2(111)表面存在化学吸附与物理吸附两种情况. 化学吸附结构中甲醛的碳、氧原子分别与表面的氧、铈原子发生相互作用, 形成CH2O2物种; 吸附能随着覆盖度的增加而减小. 与自由甲醛分子相比, 物理吸附的甲醛构型变化不大, 其吸附能较小. 利用CNEB(climbing nudged elastic band)方法计算了甲醛在CeO2(111)表面的初步解离反应活化能(约1.71 eV), 远高于甲醛脱附能垒, 这与甲醛在清洁CeO2(111)表面程序升温脱附实验中产物主要为甲醛的结果相一致. 相似文献
16.
基于密度泛函理论(DFT)的第一性原理赝势法, 对MgF2(010)面及吸附Ag的构型进行了优化, 并计算了MgF2(010)面吸附Ag体系的吸附能、 电子结构和光学性能. 结果表明, MgF2(010)面能隙低于体相, 态密度分裂, 出现表面态. Ag在MgF2(010)面的吸附属于稳定的化学吸附, 最佳吸附位为最外层F的四重穴位. 吸附机理主要表现为Ag的4p轨道与第二层的Mg的2p和3s轨道之间发生相互作用, 有少量电荷从Ag向Mg迁移. 吸附Ag后, 可见光波段的光吸收增加, Ag吸附后将使体系在可见光波段出现吸收峰. 相似文献
17.
用密度泛函理论(DFT)研究了MgF2(010)、MgF2(001)、MgF2(011)及MgF2(110)四种表面10种构型的稳定性和电子特性. 结果表明: 四种表面的邻近表面几层原子均出现了明显的驰豫现象, 终止于单层F原子的表面相对稳定; 进一步对比分析四种表面(终止于单层F原子的稳定构型)的表面能发现, 稳定性依次减弱排列为MgF2(110)、MgF2(011)、MgF2(010)、MgF2(001); 最稳定的MgF2(110)表面的态密度显示在费米能级以下较多的成键电子处于低能级区, 同时由于表面的影响, 导致表面F原子电荷聚集显负电性, 促使表面活性增加. 相似文献
18.
19.
通过周期性层状模型, 利用密度泛函理论预测了微量杂质元素原子M(M=Fe, Si, Mg, Cu, Mn, Ga, In, Sn, Pb)在高纯铝箔(100)表面的偏聚趋势. 计算得到表面偏聚能与已有实验结果相吻合. 表面偏聚能由表面取代的微量元素原子M的位置、原子半径和金属的表面能决定. 当表面偏聚能为负时, 微量元素原子M在表面偏聚, 反之则杂质原子不发生表面聚集. 微量元素原子在铝箔表面偏聚可以使铝箔表面产生大量的缺陷和位错, 它们在铝箔腐蚀时容易成为腐蚀的形核起点, 进而增加铝箔的腐蚀发孔密度. 相似文献