首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As part of studies aimed at clarifying conflicting reports concerning the acidifying effects exerted by the SO2CF3 vs. NO2 moieties with respect to carbanion stabilities, we have investigated the ionization equilibria of an extended set of benzyltriflones and have determined both pKa values of the carbon acids and 1H and 13C NMR parameters of the resulting carbanions. Acidities determined in H2O-Me2SO mixtures and in pure Me2SO show a contrasting behaviour between 4-X-substituted benzyl triflones and related arylnitromethanes. While the latter exhibit a decreasing acidity on going from H2O to Me2SO media, the benzyltriflone analogues show in fact increasing acidity in Me2SO. This opposing trend suggests that the exocyclic alpha-SO2CF3 moiety is strongly stabilizing the negative charge of the carbanions through polarizability effects favored by the dipolar aprotic Me2SO solvent. As a result, inversions in the acidity sequences of alpha-NO2 and alpha-SO2CF3 activated carbon acids are observed on going from H2O to Me2SO. 1H and 13C NMR data are in full accord with the conclusion that only little negative charge is transferred to the 4-X-substituted phenyl ring upon ionization. Increasing further the ring substitution by electronegative groups to 2,4- and 2,4,6- patterns, enhances the charge transfer but this nevertheless remains moderate even with the most activated 2,4,6- trinitro or 2,6-dinitro-4-SO2CF3 sequences. Altogether, our results provide convincing evidence of the unusual electron transmission ability of the very strongly acidifying SO2CF3 group.  相似文献   

2.
3.
5,6-Di-tert-butyl-2,3,7-trithiabicyclo[2.2.1]hept-5-ene 7-endo-oxide (4) was prepared by addition of S(2)Cl(2) to 3,4-di-tert-butylthiophene 1-oxide (3) in high yield. The oxidation of 4 with dimethyldioxirane gave a 7:1 isomeric mixture of 5,6-di-tert-butyl-2,3,7-trithiabicyclo[2.2.1]hept-5-ene 2-endo-7-endo-dioxide (5a) and 2-exo-7-endo-dioxide (5b) quantitatively. The thermally labile 5 was shown to undergo a retro-Diels-Alder reaction that produces S(2)O and 3 in a reversible way. The resulting S(2)O was trapped by Diels-Alder reactions with dienes to give 3,6-dihydro-1,2-dithiin 1-oxides in good yields. In the absence of the dienes, S(2)O disproportionates to SO(2) and S(3), and the resulting S(3) underwent a 1,3-dipolar cycloaddition with 3 on its syn-pi-face with respect to the S[double bond]O bond to give a trithiolane derivative, whereas in the presence of excess norbornene, it produced the 1,3-dipolar cycloadduct with norbornene in good yield. Thus, the retro-Diels-Alder reaction of 5 functions as an S(2)O and S(3) source. DFT calculations at the B3LYP/6-311+G(3df,2p) level were carried out in order to explain why S(2)O disproportionates to SO(2) and S(3) and why S(2)O acts as a dienophile and not a 1,3-dipole, whereas O(3) and S(3) serve as 1,3-dipoles.  相似文献   

4.
5.
6.
Bis(dimethylamino)trifluoro sulfonium Salts: [CF3S(NMe2)2]+[Me3SiF2], [CF3S(NMe2)2]+ [HF2] and [CF3S(NMe2)2]+[CF3S] From the reaction of CF3SF3 with an excess of Me2NSiMe3 [CF3(NMe2)2]+[Me3SiF2] (CF3‐BAS‐fluoride) ( 5 ), from CF3SF3/CF3SSCF3 and Me2NSiMe3 [CF3S(NMe2)2]+‐ [CF3S] ( 7 ) are isolated. Thermal decomposition of 5 gives [CF3S(NMe2)2]+ [HF2] ( 6 ). Reaction pathways are discussed, the structures of 5 ‐ 7 are reported.  相似文献   

7.
The ionic liquid 1‐butyl‐3‐methylimidazolium hydrogensulfate, [bmim]HSO4, turned out to be resistant even to strong oxidizers like SO3. Thus, it should be a suitable solvent for the preparation of polysulfates at low temperatures. As a proof of principle we here present the synthesis and crystal structure of K2(S2O7)(H2SO4), which has been obtained from the reaction of K2SO4 and SO3 in [bmim]HSO4. In the crystal structure of K2(S2O7)(H2SO4) (orthorhombic, Pbca, Z = 8, a = 810.64(2) pm, b = 1047.90(2) pm, c = 2328.86(6) pm, V = 1978.30(8) Å3) two crystallographically unique potassium cations are coordinated by a different number of monodentate and bidentate‐chelating disulfate anions as well as by sulfuric acid molecules. The crystal structure consists of alternating layers of [K2(S2O7)] slabs and H2SO4 molecules. Hydrogen bonds between hydrogen atoms of sulfuric acid molecules and oxygen atoms of the neighboring disulfate anions are observed.  相似文献   

8.
Gas phase thermal decomposition of CF(3)OC(O)OOC(O)F and CF(3)OC(O)OOCF(3) was studied at temperatures between 64 and 98 degrees C (CF(3)OC(O)OOC(O)F) and 130-165 degrees C (CF(3)OC(O)OOCF(3)) using FTIR spectroscopy to follow the course of the reaction. For both substances, the decompositions were studied with N(2) and CO as bath gases. The rate constants for the decomposition of CF(3)OC(O)OOC(O)F in nitrogen and carbon monoxide fit the Arrhenius equations k(N)2 = (3.1 +/- 0.1) x 10(15) exp[-(29.0 +/- 0.5 kcal mol(-1)/RT)] and k(CO) = (5.8 +/- 1.3) x 10(15) exp[-(29.4 +/- 0.5 kcal mol(-1)/RT)], and that for CF(3)OC(O)OOCF(3) fits the equation k = (9.0 +/- 0.9) x 10(13) exp[-(34.0 +/- 0.7 kcal mol(-1)/RT)] (all in units of inverted seconds). Rupture of the O-O bond was shown to be the rate-determining step for both peroxides, and bond energies of 29 +/- 1 and 34.0 +/- 0.7 kcal mol(-1) were obtained for CF(3)OC(O)OOC(O)F and CF(3)OC(O)OOCF(3). The heat of formation of the CF(3)OCO(2)(*) radical, which is a common product formed in both decompositions, was calculated by ab initio methods as -229 +/- 4 kcal mol(-1). With this value, the heat of formation of the title species and of CF(3)OC(O)OOC(O)OCF(3) could in turn be obtained as Delta(f) degrees (CF(3)OC(O)OOC(O)F) = -286 +/- 6 kcal mol(-1), Delta(f) degrees (CF(3)OC(O)OOCF(3)) = -341 +/- 6 kcal mol(-1), and Delta(f) degrees (CF(3)OC(O)OOC(O)OCF(3)) = -430 +/- 6 kcal mol(-1).  相似文献   

9.
The title compounds, poly­[[[bis(2‐methoxy­ethyl) ether]­lithium(I)]‐di‐μ3‐tri­fluoro­methanesulfonato‐lithium(I)], [Li2(CF3SO3)2(C6H14O3)]n, and poly­[[[bis(2‐methoxy­ethyl) ether]­lithium(I)]‐di‐μ3‐tri­fluoro­acetato‐dilithium(I)‐μ3‐tri­fluoro­acetato], [Li3(C2F3O2)3(C6H14O3)]n, consist of one‐dimensional polymer chains. Both structures contain five‐coordinate Li+ cations coordinated by a tridentate diglyme [bis(2‐methoxy­ethyl) ether] mol­ecule and two O atoms, each from separate anions. In both structures, the [Li(diglyme)X2]? (X is CF3SO3 or CF3CO2) fragments are further connected by other Li+ cations and anions, creating one‐dimensional chains. These connecting Li+ cations are coordinated by four separate anions in both compounds. The CF3SO3? and CF3CO2? anions, however, adopt different forms of cation coordination, resulting in differences in the connectivity of the structures and solvate stoichiometries.  相似文献   

10.
11.
12.
The synthesis and characterization of nine coordination networks based on 1,3-bis(phenylthio)propane, L(3), and silver(I) salts of PF(6)(-) (1), CF(3)COO(-) (2), CF(3)CF(2)COO(-) (3), CF(3)CF(2)CF(2)COO(-) (4), p-TsO(-) (5, 6), and CF(3)SO(3)(-) (7-9) are reported. Only 1 and other "isostructural" complexes with weakly coordinating anions such as ClO(4)(-) and SbF(6)(-) are of the host-guest type. In all the other complexes, the anions and the acetone molecules, when present, are coordinated to the metal. Most of the complexes studied here form a 2D-coordination network. Only 4 and 5 adopt a polymer-like chain structure. The packing of the chains of 4 is pseudohexagonal compact, while that of 5 is of the centered type. In complex 1, the silver atom is tetrahedrally coordinated to the sulfur atoms of four different ligands. The PF(6)(-) anions and acetone molecules, sandwiched between silver-ligand cationic sheets, are held through van der Waals interactions. In each of the three perfluorocarboxylates (2-4), two silver atoms are joined by the anions in a diatomic bridging mode. The Ag...Ag distances are sufficiently short to indicate weak metal...metal interactions. The dimeric units in 2 and 3 are interconnected through the ligands, thereby generating a 2D-network of neutral sheets, while, in 4, the dimeric units are bound to four ligands and a 1D-coordination polymer is generated. In the case of the sulfonate anions (p-TsO(-) and CF(3)SO(3)(-)), the crystallization solvent influences the structure adopted. Thus, in 5, 7, and 9 obtained from petroleum ether, or other nonpolar solvents, two silver atoms are bound in a double-bridge fashion, while a monobridge mode is noted for 6 and 8, both recrystallized from diethyl ether. In 8, both bridging types are observed. The thermogravimetric investigation, in the room temperature-450 degrees C interval, of complexes 1, 3, and 7, which incorporate acetone molecules in their crystal structures, reveals a two-step weight loss for 1 (the acetone molecules are lost first followed by the ligands, leaving behind the silver salt), while complexes 3 and 7 decompose in a single step to metallic silver.  相似文献   

13.
The barium perfluoroalkanedisulfonates Ba(O3S)2(CF2)n (n = 1, 3–5) and the new potassium fluoroalkanedisulfonates K2(O3S)2CHF, K2(O3S)2CF2, and K2(O3S)2(CF2)5 have been prepared by reaction of (CF2)n(SO2F)2 (n = 1, 3–5) or CHF(SO2F)2 with CaO (or Ca(OH)2) and M(OH)x (M = Ba, x = 2; M = K, x = 1) or with Ba(OH)2 alone (n = 1) in water. In each of the crystal structures of K2(O3S)2CHF and K2(O3S)2CF2, there is an eight‐coordinate and a six‐coordinate potassium ion, whilst in K2(O3S)2(CF2)3H2O, two different eight‐coordinate potassium ions are linked by a bridging water molecule. One potassium has additionally six sulfonate oxygen and one fluorine donor atoms, and the other, five sulfonate oxygens and two fluorine donor atoms. The preparation of highly crystalline [Nien3][(O3S)(CF2)n] (en = ethane‐1,2‐diamine; n = 1, 3–5) and the X‐ray crystal structures for n = 1 or 3 provide evidence for the value of perfluoroalkanedisulfonate ions as counter ions for the crystallization of cationic complexes.  相似文献   

14.
15.
The synthesis of CF3OC(O)OOCF3, CF3OC(O)OOC(O)OCF3, and CF3OC(O)OOOC(O)OCF3 is accomplished by the photolysis of a mixture of (CF3CO)2O, CO, and O2. Pure CF3OC(O)OOCF3 and CF3OC(O)OOC(O)OCF3 are isolated after thermal decomposition of CF3OC(O)OOOC(O)OCF3 and repeated trap-to-trap condensation. Additional spectroscopic data of known CF3OC(O)OOCF3 are obtained by recording NMR, IR, Raman, and UV spectra: At room temperature CF3OC(O)OOC(O)OCF3 is stable for days in the liquid or gaseous state. The melting point is -38 degrees C, and the boiling point is extrapolated to 73 degrees C from the vapor pressure curve log p = 8.657-1958/T (p/mbar, T/K). The new compound is characterized by molecular mass determination and by NMR, vibrational, and UV spectroscopy. The new trioxide CF3OC(O)OOOC(O)OCF3 cannot be separated from CF3-OC(O)OOC(O)OCF3 by distillation due to their similar boiling points. CF3OC(O)OOOC(O)OCF3 decomposes at room temperature within hours into a mixture of CF3OC(O)OOC(O)OCF3, CF3OC(O)OOCF3, CO2, and O2. Its characterization is discussed along with a possible mechanism for formation and decomposition reactions.  相似文献   

16.
Structural and conformational properties of two sulfenyl derivatives, trifluoromethanesulfenyl acetate, CF3S-OC(O)CH3 (1), and trifluoromethanesulfenyl trifluoroacetate, CF3S-OC(O)CF3 (2), were determined by gas electron diffraction, vibrational spectroscopy, in particular with IR (matrix) spectroscopy, which includes photochemical studies, and by quantum chemical calculations. Both compounds exist in the gas phase as a mixture of two conformers, with the prevailing component possessing a gauche structure around the S-O bond. The minor form, 15(5)% in 1 and 11(5)% in 2 according to IR(matrix) spectra, possesses an unexpected trans structure around the S-O bond. The C=O bond of the acetyl group is oriented syn with respect to the S-O bond in both conformers. UV-visible broad band irradiation of 1 and 2 isolated in inert gas matrixes causes various changes to occur. Conformational randomization clearly takes place in 2 with simultaneous formation of CF3SCF3. For 1 the only reaction channel detected leads to the formation of CH3SCF3 with the consequent extrusion of CO2. Quantum chemical calculations (B3LYP/6-31G and MP2 with 6-31G and 6-311G(2df,pd) basis sets) confirm the existence of a stable trans conformer. The calculations reproduce the conformational properties for both compounds qualitatively correct with the exception of the B3LYP method for compound 2 which predicts the trans form to be prevailing, in contrast to the experiment.  相似文献   

17.
Oxide methanesulfonates of Mo, U, Re, and V have been prepared by reaction of MoO(3), UO(2)(CH(3)COO)(2)·2H(2)O, Re(2)O(7)(H(2)O)(2), and V(2)O(5) with CH(3)SO(3)H or mixtures thereof with its anhydride. These compounds are the first examples of solvent-free oxide methanesulfonates of these elements. MoO(2)(CH(3)SO(3))(2) (Pbca, a=1487.05(4), b=752.55(2), c=1549.61(5) pm, V=1.73414(9) nm(3), Z=8) contains [MoO(2)] moieties connected by [CH(3)SO(3)] ions to form layers parallel to (100). UO(2)(CH(3)SO(3))(2) (P2(1)/c, a=1320.4(1), b=1014.41(6), c=1533.7(1) pm, β=112.80(1)°, V=1.8937(3) nm(3), Z=8) consists of linear UO(2)(2+) ions coordinated by five [CH(3)SO(3)] ions, forming a layer structure. VO(CH(3)SO(3))(2) (P2(1)/c, a=1136.5(1), b=869.87(7), c=915.5(1) pm, β=113.66(1)°, V=0.8290(2) nm(3), Z=4) contains [VO] units connected by methanesulfonate anions to form corrugated layers parallel to (100). In ReO(3)(CH(3)SO(3)) (P1, a=574.0(1), b=1279.6(3), c=1641.9(3) pm, α=102.08(2), β=96.11(2), γ=99.04(2)°, V=1.1523(4) nm(3), Z=8) a chain structure exhibiting infinite O-[ReO(2)]-O-[ReO(2)]-O chains is formed. Each [ReO(2)]-O-[ReO(2)] unit is coordinated by two bidentate [CH(3)SO(3)] ions. V(2)O(3)(CH(3)SO(3))(4) (I2/a, a=1645.2(3), b=583.1(1), c=1670.2(3) pm, β=102.58(3), V=1.5637(5) pm(3), Z=4) adopts a chain structure, too, but contains discrete [VO]-O-[VO] moieties, each coordinated by two bidentate [CH(3)SO(3)] ligands. Additional methanesulfonate ions connect the [V(2)O(3)] groups along [001]. Thermal decomposition of the compounds was monitored under N(2) and O(2) atmosphere by thermogravimetric/differential thermal analysis and XRD measurements. Under N(2) the decomposition proceeds with reduction of the metal leading to the oxides MoO(2), U(3)O(7), V(4)O(7), and VO(2); for MoO(2)(CH(3)SO(3))(2), a small amount of MoS(2) is formed. If the thermal decomposition is carried out in a atmosphere of O(2) the oxides MoO(3) and V(2)O(5) are formed.  相似文献   

18.
The new tin(IV) species (CH(3))(2)SnCl(OTeF(5)) was prepared via either the solvolysis of (CH(3))(3)SnCl in HOTeF(5) or the reaction of (CH(3))(3)SnCl with ClOTeF(5). It was characterized by NMR and vibrational spectroscopy, mass spectrometry, and single crystal X-ray diffraction. (CH(3))(2)SnCl(OTeF(5)) crystallizes in the monoclinic space group P2(1)/n (a = 5.8204(8) A, b =10.782(1) A, c =15.493(2) A, beta = 91.958(2) degrees, V = 971.7(2) A(3), Z = 4). NMR spectroscopy of (CH(3))(3)SnX, prepared from excess Sn(CH(3))(4) and HX (X = OTeF(5) or N(SO(2)CF(3))(2)), revealed a tetracoordinate tin environment using (CH(3))(3)SnX as a neat liquid or in dichloromethane-d(2) (CD(2)Cl(2)) solutions. In acetone-d(6) and acetonitrile-d(3) (CD(3)CN) solutions, the tin atom in (CH(3))(3)SnOTeF(5) was found to extend its coordination number to five by adding one solvent molecule. In the strong donor solvent DMSO, the Sn-OTeF(5) bond is broken and the (CH(3))(3)Sn(O=S(CH(3))(2))(2)(+) cation and the OTeF(5)(-) anion are formed. (CH(3))(3)SnOTeF(5) and (CH(3))(3)SnN(SO(2)CF(3))(2) react differently with water. While the Te-F bonds in the OTeF(5) group of (CH(3))(3)SnOTeF(5) undergo complete hydrolysis that results in the formation of [(CH(3))(3)Sn(H(2)O)(2)](2)SiF(6), (CH(3))(3)SnN(SO(2)CF(3))(2) forms the stable hydrate salt [(CH(3))(3)Sn(H(2)O)(2)][N(SO(2)CF(3))(2)]. This salt crystallizes in the monoclinic space group P2(1)/c (a = 7.3072(1) A, b =13.4649(2) A, c =16.821(2) A, beta = 98.705(1) degrees, V = 1636.00(3) A(3), Z = 4) and was also characterized by NMR and vibrational spectroscopy.  相似文献   

19.
A broad range of (phosphino)(aryl)carbenes, 1b-d, 10a,b, and 14a,b, were prepared by photolysis of their diazo precursors. The influence of the steric and electronic properties of the aryl ring on the structure and stability of these carbenes was studied both experimentally and theoretically. Among the different stabilization modes investigated, those featuring an acceptor as well as a spectator aryl substituent result in stable or at least persistent carbenes that could be completely characterized by classical spectroscopic methods. In marked contrast, the new substitution pattern featuring a donor aryl ring results in a very fleeting carbene.  相似文献   

20.
The reduction of selected lanthanide cations to the zerovalent state in the room-temperature ionic liquid [Me3N(n)Bu][TFSI] is reported (where TFSI = bistriflimide, [N(SO2CF3)2]-). The lanthanide cations were introduced to the melt as the TFSI hydrate complexes [Ln(TFSI)3(H2O)3] (where Ln = La(III), Sm(III) or Eu(III)). The lanthanum compound [La(TFSI)3(H2O)3] has been crystallographically characterized, revealing the first structurally characterized f-element TFSI complex. The lanthanide in all three complexes was shown to be reducible to the metallic state in [Me3N(n)Bu][TFSI]. For both the Eu and Sm complexes, reduction to the metallic state was achieved via divalent species, and there was an additional observation of the electrodeposition of Eu metal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号