首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, platinum (Pt) metal loaded activated multi-walled carbon nanotubes (MWNTs) were prepared with different structural characteristics for hydrogen storage applications. The process was conducted by a gas phase CO2 activation method at 1200 °C as a function of the CO2 flow time. Pt-loaded activated MWNTs were also formulated to investigate the hydrogen storage characteristics. The microstructures of the Pt-loaded activated MWNTs were characterized by XRD and TEM measurements. The textural properties of the samples were analyzed using N2 adsorption isotherms at 77 K. The BET, D-R, and BJH equations were used to observe the specific surface areas and the micropore and mesopore structures. The hydrogen storage capacity of the Pt-loaded activated MWNTs was measured at 298 K at a pressure of 100 bar. The hydrogen storage capacity was increased with CO2 flow time. It was found that the micropore volume of the activated MWNTs plays a key role in the hydrogen storage capacity.  相似文献   

2.
Platinum nanoparticles (Pt NPs) were deposited onto multi-walled carbon nanotubes (MWNTs) through direct chemical reduction without any other stabilizing agents. Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry were employed to characterize the morphology of the as-prepared nanocomposite (noted as Pt NPs-MWNTs) and further identify the Pt NPs on the surface of MWNTs. The nanocomposite demonstrated the ability to electrocatalyze the oxidation of hydrogen peroxide and substantially raises the response current. A sensitivity of 591.33 μA mM−1 cm−2 was obtained at Pt NPs-MWNTs modified electrode. Thus, we immobilized glucose oxidase (GOD) as a model enzyme on the nanocomposite-based electrode with a thin layer of Nafion to fabricate a glucose biosensor, which showed sensitive and fast response to glucose. The influence of the GOD loading was investigated and the biosensor with an enzyme loading concentration of 10 mg/mL shows optimal performance for glucose detection, that is, a detection limit of 3 μM and a response time of 3 s, respectively.  相似文献   

3.
Core/shell nanostructures have received considerable attention due to the synergistic effect of their combination of materials. In this work, core/shell carbon/multi walled carbon nanotubes (MWNTs) (C-MWNTs) composed of core MWNTs and carbon shells were prepared to obtain a new type of carbon electrode materials. Carbon shells containing nitrogen groups were prepared by coating polyaniline (PANI) onto the MWNTs by in situ polymerization and subsequent carbonization at 850 °C. After carbonization, the C-MWNTs contained 5.84% nitrogen and showed a hollow structure and crystallinity like that of pristine MWNTs. In addition, the C-MWNTs exhibited electrochemical performance superior to that of pristine MWNTs, and the highest specific capacitance (231 F g−1) of the C-MWNTs was obtained at a scan rate of 0.1 A g−1, as compared to 152 F g−1 for pristine MWNTs. This superior performance is attributed to the maintenance of high electrical conductivity by the π–π interaction between the carbon layer and the MWNTs, increased specific surface area of C-MWNTs, and the presence of nitrogen groups formed on the carbon electrode after the carbonization of the shell PANI.  相似文献   

4.
Homogeneous cuprous oxide (Cu2O) nanoparticles with size of 8-10 nm are deposited on multiwall carbon nanotubes (MWNTs) by a polyol process using Cu(CH3COO)2·H2O as a precursor and diethylene glycol as both solvent and reducing agent. The composition of the resulting Cu2O/MWNTs composites is confirmed by XRD pattern, XPS spectrum and HRTEM images. With the change of the reaction conditions, it is found that Cu2O nanoparticles on the surface of MWNTs can be leafage-like or big spherical particle coated on the surface of MWNTs. HRTEM images indicate that all the leafage-like and big spherical particles are assembled by small Cu2O particles with size of about 2-5 nm. With the assistance of FTIR spectrum, a tentative mechanism is proposed for the formation of Cu2O nanoparticles with different morphologies on the surface of MWNTs.  相似文献   

5.
Nanocrystalline Mo2C powders were successfully synthesized at 500 °C by reacting molybdenum chloride (MoCl5) with C (graphite or carbon nanotube) in metallic sodium medium. X-ray powder diffractometer (XRD), transmission electron microscope (TEM), X-ray photoelectron spectroscope (XPS) and surface area analyzer (BET method) were used to characterize the samples. Experiments reveal that the carbon source used for the carbide synthesis has a great effect on the particle size and the surface area of the samples. When micro-sized graphite was used as C source the obtained nanocrystalline Mo2C powder consists of particles of 30∼100 nm, with a surface area of 2.311 m2/g. When carbon nanotubes were used as C source, the as-synthesized Mo2C sample is composed of particles of 20∼50 nm, with a surface area of 23.458 m2/g, which is an order of magnitude larger than that of the carbide prepared from the graphite.  相似文献   

6.
In this work the thermal decomposition characteristics of micron sized aluminum powder + potassium perchlorate pyrotechnic systems were studied with thermal analytical techniques. The results show that the reactivity of aluminum powder in air increases as the particle size decreases. Pure aluminum with 5 μm particle size has a fusion temperature about 647 °C, but this temperature for 18 μm powder is 660 °C. Pure potassium perchlorate has an endothermic peak at 300 °C corresponding to a rhombic-cubic transition, a fusion temperature around 590 °C and decomposes at 592 °C. DTA curves for Al5/KClO4 (30:70) mixture show a maximum peak temperature for thermal decomposition at 400 °C. Increasing the particle size of aluminum powder increases the ignition temperature of the mixture. The oxidation temperature increased by enhance in the aluminum content of the mixture.  相似文献   

7.
In this study, the usability of the plant thistle, Onopordum acanthium L., belonging to the family Asteraceae (Compositae), in liquid fuel production has been investigated. The experiments were performed in a fixed-bed Heinze pyrolysis reactor to investigate the effects of heating rate, pyrolysis temperature and sepiolite percentage on the pyrolysis product yields and chemical compositions. Experiments were carried out in a static atmosphere with a heating rate of 7 °C/min and 40 °C/min, pyrolysis temperature of 350, 400, 500, 550 and 700 °C and particle size of 0.6 < Dp < 0.85 mm. Catalyst experiments were conducted in a static atmosphere with a heating rate of 40 °C/min, pyrolysis temperature of 550 °C and particle size of 0.6 < Dp < 0.85 mm. Bio-oil yield increased from 18.5% to 27.3% with the presence of 10% of sepiolite catalyst at pyrolysis temperature of 550 °C, with a heating rate of 40 °C/min, and particle size of 0.6 < Dp < 0.85 mm. It means that the yield of bio-oil was increased at around 48.0% after the catalyst added. Chromatographic and spectroscopic studies on the bio-oil showed that the oil obtained from O. acanthium L. could be used as a renewable fuels and chemical feedstock.  相似文献   

8.
A new method to electro-deposit platinum nanoparticles on the surface of multi-walled carbon nanotubes (MWNTs) functionalized with 4-mercaptobenzene has been described. X-ray photoelectron spectroscopy results reveal that 4-mercaptobenzene was attached to the surface of MWNTs. Transmission electron microscope and X-ray diffraction analysis confirm that platinum nanoparticles were highly dispersed on the surface of MWNTs, and the average size of the platinum particle is 4.2 nm. The electrocatalytic properties of the Pt/MWNT composite electrode for methanol oxidation were investigated by cyclic voltammetry, and the results show that the fabricated composites exhibit high catalytic activity and good long-term stability. The study provides a feasible approach to fabricate Pt/MWNT composite electrode for direct methanol fuel cell.  相似文献   

9.
Networks of different carbon nanotube (CNT) materials were investigated as resistive gas sensors for NO2 detection. Sensor films were fabricated by airbrushing dispersions of double-walled and multi-walled CNTs (DWNTs and MWNTs, respectively) on alumina substrates. Sensors were characterized by resistance measurements from 25 to 250 °C in air atmosphere in order to find the optimum detection temperature. Our results indicate that CNT networks were sensitive to NO2 concentrations as low as 0.1 ppm. All tested sensors provided significantly lower response to interfering gases such as H2, NH3, toluene and octane. We demonstrate that the measured sensitivity upon exposure to NO2 strongly depends on the employed CNT material. The highest sensitivity values were obtained at temperatures ranging between 100 and 200 °C. The best sensor performance, in terms of recovery time, was however achieved at 250 °C. Issues related to the gas detection mechanisms, as well as to CNT network thermal stability in detection experiments performed in air at high operation temperatures are also discussed.  相似文献   

10.
Nanosized aluminum nitride hollow spheres were synthesized by simply heating aluminum nanoparticles in ammonia at 1000 °C. The as-synthesized sphere shells are polycrystalline with cavity diameters ranging from 15 to 100 nm and shell thickness from 5 to 15 nm. The formation mechanism can be explained by the nanoscale Kirkendall effect, which results from the difference in diffusion rates between aluminum and nitrogen. The Al nanoparticles served as both reactant and templates for the hollow sphere formation. The effects of precursor particle size and temperature were also investigated in terms of product morphology. Room temperature cathode luminescence spectrum of the nanosized hollow spheres showed a broad emission band centered at 415 nm, which is originated from oxygen related luminescence centers. The hollow structure survived a 4-h heat treatment at 1200 °C, exhibiting excellent thermal stability.  相似文献   

11.
Platinum (Pt) nanoparticles were deposited at the surface of well-aligned multi-walled carbon nanotubes (MWNTs) by potential cycling between +0.50 and −0.70 V at a scanning rate of 50 mV · s−1 in 5 mM Na2PtCl6 solution containing 0.1 M NaCl. The electrocatalytic oxidation of methanol at the nanocomposites of Pt nanoparticles/nanotubes (Ptnano/MWNTs) has been investigated using 0.2 M H2SO4 as supporting electrolyte. The effects of various parameters, such as Pt loading, concentration of methanol, medium temperature as well as the stability of Ptnano/MWNTs electrode, have been studied. Compared to glassy carbon electrode, carbon nanotube electrode significantly enhances the catalytic efficiency of Pt nanoparticles for methanol oxidation. This improvement in performance is due not only to the high surface area and the fast electron transfer rate of nanotubes but also to the highly dispersed Pt nanoparticles as electrocatalysts at the tips and the sidewalls of nanotubes.  相似文献   

12.
The surface structure and electrochemical performance have been investigated of petroleum cokes heat-treated at 2100 and 2600 °C (abbreviated to PC2100 and PC2600) and those fluorinated by elemental fluorine at 200 and 300 °C. XPS study indicated that surface fluorine was covalently bonded to carbon and surface fluorine contents were in the range of 4.9-17.8 at.%. Surface oxygen was reduced by fluorination. BET surface areas were nearly the same before and after fluorination. Fluorination enhanced D-band intensity in two Raman shifts observed at 1580 cm−1 (G-band) and 1360 cm−1 (D-band), indicating the increase in the surface disordering. At a high current density of 150 mA/g, the capacity increase was observed for PC2100 fluorinated at 200 °C and for PC2600 fluorinated at 200 and 300 °C. The most interesting result was the increase in first coulombic efficiencies by surface fluorination. First columbic efficiencies for PC2600 fluorinated at 300 °C were increased by 12.1% at 60 mA/g and by 25.8% at 150 mA/g, respectively. The impedance measurements showed that the resistances of surface films on carbon electrodes were increased by fluorination, however, the charge transfer resistances were decreased by 12.3% for PC2100 fluorinated at 200 °C, and by 27.5 and 6.4% for PC2600 fluorinated at 200 and 300 °C, respectively. The reduction of the charge transfer resistances was consistent with increase in the charge capacities for PC2100 fluorinated at 200 °C and PC2600 fluorinated at 200 and 300 °C.  相似文献   

13.
Comparative study of two types of single-wall carbon nanotubes and standard carbon black Vulcan XC-72 as supports for catalysts of reactions proceeding in fuel cells is carried out. The nanotubes were prepared by arc method; they differed in the degree of their purifying from amorphous carbon and metal impurities. The structure and hydrophobic-hydrophilic properties of these carbon supports are studied by etalon porosimetry. The effect of the supports’ specific surface area on the deposited catalyst particles size and specific surface area is studied. The catalysts (Pt-Ru and Pt) were deposited from aqueous solutions of their salts. Platinum was also deposited by thermal decomposition of ethoxy clusters. It is shown that in methanol oxidation reaction at the Pt-Ru catalysts the current values per unit true surface area do not depend on the support nature, provided the catalyst loading is equal and the particle size is similar. When oxygen is reduced at platinum deposited onto purified nanotubes and the carbon black Vulcan XC-72, specific kinetic currents also are close to each other. It is shown that the degree of nanotubes purification and their structure affect the kinetics of this reaction significantly.  相似文献   

14.
We reported a simple and effective green chemistry route for facile synthesis of nanowire-like Pt nanostructures at one step. In the reaction, dextran acted as a reductive agent as well as a protective agent for the synthesis of Pt nanostructures. Simple mixing of precursor aqueous solutions of dextran and K2PtCl4 at 80 °C could result in spontaneous formation of the Pt nanostructures. Optimization of the experiment condition could yield nanowire-like Pt nanostructures at 23:1 molar ratio of the dextran repeat unit to K2PtCl4. Transmission electron microscopy results revealed that as-prepared nanowire-like Pt nanostructures consisted of individual Pt nanoparticles with the size range from 1.7 to 2.5 nm. Dynamic light scattering analysis indicated that as-prepared nanowire-like nanostructures have already formed in solution. The as-prepared nanowire-like Pt nanostructures were further characterized by UV-vis spectroscopy, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. In addition, the ratio dependence and temperature dependence of this reaction have also been investigated. The as-prepared nanowire-like Pt nanostructures can be immobilized on glassy carbon electrodes using an electrochemical coupling strategy, and the resulting nanowire-like Pt nanostructures modified film exhibited an excellent electrocatalytic activity for the reduction of oxygen and the oxidation of NADH.  相似文献   

15.
Hyphenation of thermogravimetric analyzer (TGA) and thermo-Raman spectrophotometer for in situ monitoring of solid-state reaction in oxygen atmosphere forming NiO-Al2O3 catalyst nanoparticles is investigated. In situ thermo-Raman spectra in the range from 200 to 1400 cm−1 were recorded at every degree interval from 25 to 800 °C. Thermo-Raman spectroscopic studies reveal that, although the onset of formation is around 600 °C, the bulk NiAl2O4 forms at temperatures above 800 °C. The X-ray diffraction (XRD) spectra and the scanning electron microscopy (SEM) images of the reaction mixtures were recorded at regular temperature intervals of 100 °C, in the temperature range from 400 to 1000 °C, which could provide information on structural and morphological evolution of NiO-Al2O3. Slow controlled heating of the sample enabled better control over morphology and particle size distribution (∼20-30 nm diameter). The observed results were supported by complementary characterizations using TGA, XRD, SEM, transmission electron microscopy, and energy dispersive X-ray analysis.  相似文献   

16.
K2NbO3F powders were directly synthesized by an alternative solid-state method at low temperature. Stoichiometric ammonium niobium oxalate, K2C2O4 and KF were mixed with small amounts of water and then dried at room temperature. X-ray diffraction results show that layered perovskite K2NbO3F powders can be obtained by calcining the mixture in temperature range from 550 to 700 °C for 3 h. The elemental composition, powder morphology and particle size of calcination products were analyzed by scanning electron microscope-energy dispersive spectroscopy (SEM/EDS). The SEM images suggest that the particles of the powders obtained at 550 °C are irregular platelets with a diameter of 0.5-1 μm and a thickness of 100-200 nm. The platelets are 3-5 μm in diameter and 1-2 μm in thickness when the calcination temperature reaches 700 °C. K2NbO3F decomposes to K5(NbO3)4F and KF when the temperature reaches 800 °C.  相似文献   

17.
Binary carbon-supported platinum (Pt) nanoparticles were prepared by a chemical reduction method of Pt precursor on two types of carbon materials such as carbon blacks (CBs) and graphite nanofibers (GNFs). Average sizes and loading levels of Pt metal particles were dependent on a mixing ratio of two carbon materials. The highest electroactivity for methanol oxidation was obtained by preparing the binary carbon supports consisting of GNFs and CBs with a weight ratio of 30:70. Furthermore, with an increase of GNFs content from 0% to 30%, a charge-transfer resistance changed from 19 Ohm cm2 to 11 Ohm cm2. The change of electroactivity or the resistance of catalyst electrodes was attributed to the changes of specific surface area and morphological changes of carbon-supported catalyst electrodes by controlling the mixing ratio of GNFs and CBs.  相似文献   

18.
A polyaniline (PANI)/carbon nanotubes (CNTs) composite modified electrode was fabricated by galvanostatic electropolymerization of aniline on multi-walled carbon nanotubes (MWNTs)-modified gold electrode. The electrode thus prepared exhibits enhanced electrocatalytic behavior to the reduction of nitrite and facilitates the detection of nitrite at an applied potential of 0.0 V. Although the amperometric responses toward nitrite at MWNTs/gold and PANI/gold electrodes have also been observed in the experiments, these responses are far less than that obtained at PANI/MWNTs/gold electrode. The effects of electropolymerization time, MWNTs concentration and pH value of the detection solution on the current response of the composite modified electrode toward sodium nitrite, were investigated and discussed. A linear range from 5.0 × 10−6 to 1.5 × 10−2 M for the detection of sodium nitrite has been observed at the PANI/MWNTs modified electrode with a sensitivity of 719.2 mA M−1 cm−2 and a detection limit of 1.0 μM based on a signal-to-noise ratio of 3.  相似文献   

19.
Metal oxide nanoparticles prepared by pulsed laser deposition (PLD) were applied to nonenzymatic glucose detection. NiO nanoparticles with size of 3 nm were deposited on glassy carbon (GC) and silicon substrates at room temperature in an oxygen atmosphere. Transmission electron microscope (TEM) image showed nanoparticles with the size of 3 nm uniformly scattered on the Si(0 0 1) substrate. Unlike co-sputtering nanoparticle and carbon simultaneously, the PLD method can easily control the surface coverage of nanoparticles on the surface of substrate by deposition time. Cyclic voltammetry was performed on the samples deposited on the GC substrates for electrochemical detection of glucose. The differences between peak currents with and without glucose was used to optimize the coverage of nanoparticles on carbon electrode. The results indicated that optimal coverage of nanoparticles on carbon electrode.  相似文献   

20.
Microcrystalline silicalite-1 was formed on the inner surface of macroporus silica glasses prepared by the sol-gel process. By heating a homogeneous precursor solution at 100°C under a hydrothermal condition, 2–5 m of plate-like particles of silicalite-1 were deposited. With an increase of mixing time of the precursor solution, the number of silicalite-1 particles increased, accompanied by the relative decrease of the particle size. Depending on the temperature and the duration of the heat-treatment of the macroporous silica, the amount of deposited silicalite-1 varied. Below 1000°C, the amount increased with the heat-treatment temperature, as a result of the competition between the precipitation of silicalite-1 and the dissolution of silica from the macroporous silica glass under a strongly basic condition. On the other hand, above 1000°C the amount of deposited silicalite-1 decreased in accordance with the decrease of the macropore diameter by the heat-treatment, because of the limited transport of the dissolved silicate species through the smaller macropores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号