首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A novel inorganic-organic hybrid titania sol-gel nanocomposite film was prepared to fabricate a sensitive tyrosinase biosensor for the amperometric detection of trace phenolic compounds without additional electron mediators. Acetylacetone worked as a complexing ligand to chelate with Ti atom in the synthesis process, and the pH of the titania solution could be adjusted to the value which was optimum for retaining tyrosinase activity and such a membrane was stably attached on to the surface of a glassy carbon electrode (GCE). This titania matrix could supply a good environment for enzyme loading, which resulted in a high sensitivity of 15.78 μA μM−1 cm−2 for monitoring phenols with a detection limit of 1×10−8 M at a signal-to-noise ratio of 3. The TiO2 sol-gel derived biosensor exhibited a fast response less than 10 s and a good stability for more than 2 months.  相似文献   

2.
A novel amperometric biosensor utilizing two enzymes, glucose oxidase (GOD) and horseradish peroxidase (HRP), was developed for the cathodic detection of glucose. The glucose biosensor was constructed by electrochemical formation of a polypyrrole (PPy) membrane in the presence of GOD on the surface of a HRP-modified sol-gel derived-mediated ceramic carbon electrode. Ferrocenecarboxylic acid (FCA) was used as mediator to transfer electron between enzyme and electrode. In the hetero-bilayer configuration of electrode, all enzymes were well immobilized in electrode matrices and showed favorable enzymatic activities. The amperometric detection of glucose was carried out at +0.16 V (versus saturated calomel reference electrode (SCE)) in 0.1 M phosphate buffer solution (pH 6.9) with a linear response range between 8.0×10−5 and 1.3×10−3 M glucose. The biosensor showed a good suppression of interference in the amperometric detection.  相似文献   

3.
A phenol biosensor was developed based on the immobilization of tyrosinase on the surface of modified magnetic MgFe2O4 nanoparticles. The tyrosinase was first covalently immobilized to core-shell (MgFe2O4-SiO2) magnetic nanoparticles, which were modified with amino group on its surface. The resulting magnetic bio-nanoparticles were attached to the surface of carbon paste electrode (CPE) with the help of a permanent magnet. The immobilization matrix provided a good microenvironment for the retaining of the bioactivity of tyrosinase. Phenol was determined by the direct reduction of biocatalytically generated quinone species at −150 mV versus SCE. The resulting phenol biosensor could reach 95% of steady-state current within 20 s and exhibited a high sensitivity of 54.2 μA/mM, which resulted from the high tyrosinase loading of the immobilization matrix. The linear range for phenol determination was from 1 × 10−6 to 2.5 × 10−4 M with a detection limit of 6.0 × 10−7 M obtained at a signal-to-noise ratio of 3. The stability and the application of the biosensor were also evaluated.  相似文献   

4.
A novel tyrosinase biosensor based on hydroxyapatite nanoparticles (nano-HA)-chitosan nanocomposite has been developed for the detection of phenolic compounds. The uniform and size controlled nano-HA was synthesized by hydrothermal method, and its morphological characterization was examined by transmission electron microscope (TEM). Tyrosinase was then immobilized on a nano-HA-chitosan nanocomposite-modified gold electrode. Electrochemical impedance spectroscopy and cyclic voltammetry were used to characterize the sensing film. The prepared biosensor was applied to determine phenolic compounds by monitoring the reduction signal of the biocatalytically produced quinone species at −0.2 V (vs. saturated calomel electrode). The effects of the pH, temperature and applied potential on the biosensor performance were investigated, and experimental conditions were optimized. The biosensor exhibited a linear response to catechol over a wide concentration range from 10 nM to 7 μM, with a high sensitivity of 2.11 × 103 μA mM−1 cm−2, and a limit of detection down to 5 nM (based on S/N = 3). The apparent Michaelis-Menten constants of the enzyme electrode were estimated to be 3.16, 1.31 and 3.52 μM for catechol, phenol and m-cresol, respectively. Moreover, the stability and reproducibility of this biosensor were evaluated with satisfactory results.  相似文献   

5.
Two new amperometric biosensors based on immobilization of acetylcholinesterase on a sonogel-carbon electrode for detection of organophosphorous compounds are proposed. The electrodes were prepared applying high-energy ultrasounds directly to the precursors. The first biosensor was obtained by simple entrapping acetylcholinesterase in Al2O3 sol-gel matrix on the sonogel-carbon. The second biosensor was produced in a sandwich configuration. Its preparation involved adsorption of the enzyme and modification via a polymeric membrane such as polyethylene glycol and the ion-exchanger Nafion. The optimal enzyme loading was found to be 0.7 mIU. Both biosensors showed optimal activity in 0.2 M phosphate buffer, pH 7.0, at an operating potential of 210 mV. The detection limit achieved for chlorpyriphos-ethyl-oxon was 2.5 × 10−10 M at a 10-min incubation time.  相似文献   

6.
Qu F  Shi A  Yang M  Jiang J  Shen G  Yu R 《Analytica chimica acta》2007,605(1):28-33
Prussian blue nanowire array (PBNWA) was prepared via electrochemical deposition with polycarbonate membrane template for effective modification of glassy carbon electrode. The PBNWA electrode thus obtained was demonstrated to have high-catalytic activity for the electrochemical reduction of hydrogen peroxide in neutral media. This enabled the PBNWA electrode to show rapid response to H2O2 at a low potential of −0.1 V over a wide range of concentrations from 1 × 10−7 M to 5 × 10−2 M with a high sensitivity of 183 μA mM−1 cm−2. Such a low-working potential also substantially improved the selectivity of the PBNWA electrode against most electroactive species such as ascorbic acid and uric acid in physiological media. A detection limit of 5 × 10−8 M was obtained using the PBNWA electrode for H2O2, which compared favorably with most electroanalysis procedures for H2O2. A biosensor toward glucose was then constructed with the PBNWA electrode as the basic electrode by crosslinking glucose oxidase (GOx). The glucose biosensor allowed rapid, selective and sensitive determination of glucose at −0.1 V. The amperometric response exhibited a linear correlation to glucose concentration through an expanded range from 2 × 10−6 M to 1 × 10−2 M, and the response time and detection limit were determined to be 3 s and 1 μM, respectively.  相似文献   

7.
A new electrogenerated chemiluminescence biosensor was fabricated by immobilizing ECL reagent Ru(bpy)32+ and alcohol dehydrogenase in sol-gel/chitosan/poly(sodium 4-styrene sulfonate) (PSS) organically modified composite material. The component PSS was used to immobilize ECL reagent Ru(bpy)32+ by ion-exchange, while the addition of chitosan was to prevent the cracking of conventional sol-gel-derived glasses and provide biocompatible microenvironment for alcohol dehydrogenase. Such biosensor combined enzymatic selectivity with the sensitivity of ECL detection for quantification of enzyme substrate and it was much simpler than previous double-layer design. The detection limit was 9.3 × 10−6 M for alcohol (S/N = 3) with a linear range from 2.79 × 10−5 to 5.78 × 10−2 M. With ECL detection, the biosensor exhibited wide linear range, high sensitivity and good stability.  相似文献   

8.
In this paper, for the first time, Cu nanoparticles (CuNPs) were prepared by seed-mediated growth method with Au nanoparticles (AuNPs) playing the role of seeds. Carbon nanotubes (CNTs) and AuNPs were first dropped on the surface of glassy carbon (GC) electrode, and then the electrode was immersed into growth solution that contained CuSO4 and hydrazine. CuNPs were successfully grown on the surface of the CNTs. The modified electrode showed a very high electrochemical activity for electrocatalytic oxidation of glucose in alkaline medium, which was utilized as the basis of the fabrication of a nonenzymatic biosensor for electrochemical detection of glucose. The biosensor can be applied to the quantification of glucose with a linear range covering from 1.0 × 10−7 to 5 × 10−3 M and a low detection limit of 3 × 10−8 M. Furthermore, the experiment results also showed that the biosensor exhibited good reproducibility and long-term stability, as well as high selectivity with no interference from other oxidable species.  相似文献   

9.
Hemoglobin (Hb) was entrapped in a titania sol-gel matrix and used as a mimetic peroxidase to construct a novel amperometric biosensor for hydrogen peroxide. The Hb entrapped titania sol-gel film was obtained with a vapor deposition method, which simplified the traditional sol-gel process for protein immobilization. The morphologies of both titania sol-gel and the Hb films were characterized using scanning electron microscopy (SEM) and proved to be chemically clean, porous, homogeneous. This matrix provided a biocompatible microenvironment for retaining the native structure and activity of the entrapped Hb and a very low mass transport barrier to the substrates. H2O2 could be reduced by the catalysis of the entrapped hemoglobin at −300 mV without any mediator. The reagentless H2O2 sensor exhibited a fast response (less than 5 s) and sensitivity as high as 1.29 mA mM−1 cm−2. The linear range for H2O2 determination was from 5.0×10−7 to 5.4×10−5 M with a detection limit of 1.2×10−7 M. The apparent Michaelis-Menten constant of the encapsulated hemoglobin was calculated to be 0.18±0.02 mM. The stability of the biosensor was also evaluated.  相似文献   

10.
An electrochemiluminescence (ECL) biosensor for simultaneous detection of adenosine and thrombin in one sample based on bifunctional aptamer and N-(aminobutyl)-N-(ethylisoluminol) functionalized gold nanoparticles (ABEI-AuNPs) was developed. A streptavidin coated gold nanoparticles modified electrode was utilized to immobilize biotinylated bifunctional aptamer (ATA), which consisted of adenosine and thrombin aptamer. The ATA performed as recognition element of capture probe. For adenosine detection, ABEI-AuNPs labeled hybridization probe with a partial complementary sequence of ATA reacted with ATA, leading to a strong ECL response of N-(aminobutyl)-N-(ethylisoluminol) enriched on ABEI-AuNPs. After recognition of adenosine, the hybridization probe was displaced by adenosine and ECL signal declined. The decrease of ECL signal was in proportion to the concentration of adenosine over the range of 5.0 × 10−12–5.0 × 10−9 M with a detection limit of 2.2 × 10−12 M. For thrombin detection, thrombin was assembled on ATA modified electrode via aptamer–target recognition, another aptamer of thrombin tagged with ABEI-AuNPs was bounded to another reactive site of thrombin, producing ECL signals. The ECL intensity was linearly with the concentration of thrombin from 5 × 10−14 M to 5 × 10−10 M with a detection limit of 1.2 × 10−14 M. In the ECL biosensor, adenosine and thrombin can be detected when they coexisted in one sample and a multi-analytes assay was established. The sensitivity of the present biosensor is superior to most available aptasensors for adenosine and thrombin. The biosensor also showed good selectivity towards the targets. Being challenged in real plasma sample, the biosensor was confirmed to be a good prospect for multi-analytes assay of small molecules and proteins in biological samples.  相似文献   

11.
The Sonogel-Carbon electrode is a special class of sol-gel electrode that exhibits favourable mechanic and electric properties to be used as electrochemical sensor. In this study, Sonogel-Carbon modified with l-Cysteine was used to prepare a novel electrochemical sensor. The objective of this novel electrode modification was to seek new electrochemical performances for detection of epinephrine in the presence of uric acid. The response of catalytic current with epinephrine concentration shows a linear relation in the range from 1 × 10−7 to 5 × 10−4 M with a correlation coefficient of 0.998, and a detection limit of 8.7 × 10−8 M. The modified electrode had also been applied to the determination of epinephrine and uric acid in biological samples with satisfactory results. A surface characterisation of this modified electrode was carried out helped by scanning electron microscopy (SEM) and X-Ray energy dispersive spectroscopy (EDS).  相似文献   

12.
Integrated amperometric biosensors for the determination of l-malic and l-lactic acids were developed by coimmobilization of the enzymes l-malate dehydrogenase (MDH) and diaphorase (DP), or l-lactate oxidase (LOX) and horseradish peroxidase (HRP), respectively, together with the redox mediator tetrathiafulvalene (TTF), on a 3-mercaptopropionic acid (MPA) self-assembled monolayer (SAM)-modified gold electrode by using a dialysis membrane. The electrochemical oxidation of TTF at +100 mV (vs. Ag/AgCl), and the reduction of TTF+ at −50 mV were used for the monitoring of the enzyme reactions involved in l-malic and l-lactic acid determinations, respectively. Experimental variables concerning the biosensors composition and the detection conditions were optimized for each biosensor. Good relative standard deviation values were obtained in both cases for the measurements carried out with the same biosensor, with no need of cleaning or pretreatment of the bioelectrodes surface, and with different biosensors constructed in the same manner. After 7 days of continuous use, the MDH/DP biosensor still exhibited 90% of the original sensitivity, while the LOX/HRP biosensor yielded a 91% of the original response after 5 days. Calibration graphs for l-malic and l-lactic were obtained with linear ranges of 5.2 × 10−7 to 2.0 × 10−5 and 4.2 × 10−7 to 2.0 × 10−5 M, respectively. The calculated detection limits were 5.2 × 10−7 and 4.2 × 10−7 M, respectively. The biosensors exhibited a high selectivity with no significant interferences. They were applied to monitor malolactic fermentation (MLF) induced by inoculation of Lactobacillus plantarum CECT 748T into a synthetic wine. Samples collected during MLF were assayed for l-malic and l-lactic acids, and the results obtained with the biosensors exhibited a very good correlation when plotted against those obtained by using commercial enzymatic kits.  相似文献   

13.
A.K.M. Kafi 《Talanta》2009,79(1):97-37
We report on a novel amperometric biosensor for detecting phenolic compounds based on the co-immobilization of horseradish-peroxidase (HRP) and methylene blue (MB) with chitosan on Au-modified TiO2 nanotube arrays. The titania nanotube arrays were directly grown on a Ti substrate using anodic oxidation first; a gold thin film was then coated onto the TiO2 nanotubes by an argon plasma technique. The morphology and composition of the fabricated Au-modified TiO2 nanotube arrays were characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). Cyclic voltammetry and amperometry were used to study the proposed electrochemical biosensor. The effect of pH, applied electrode potential and the concentration of H2O2 on the sensitivity of the biosensor have been systemically investigated. The performance of the proposed biosensor was tested using seven different phenolic compounds, showing very high sensitivity; in particular, the linearity of the biosensor for the detection of 3-nitrophenol was observed from 3 × 10−7 to 1.2 × 10−4 M with a detection limit of 9 × 10−8 M (based on the S/N = 3).  相似文献   

14.
Cubukçu M  Timur S  Anik U 《Talanta》2007,74(3):434-439
A composite electrode was prepared by modifying glassy carbon microparticles with gold nanoparticles (Au-nps) and xanthine oxidase enzyme (XOD) for xanthine (X) and hypoxanthine (Hx) detection. After the optimization of the system for X, the biosensor was characterized for X and Hx. A linearity was obtained in the concentration range between 5.00 × 10−7 and 1.00 × 10−5 M for X with equation of y = 0.24x + 0.712 and 5.00 × 10−6 to 1.50 × 10−4 M for Hx, with equation of y = 0.014x + 0.575, respectively. Obtained results were compared to X and/or Hx biosensors including/not including Au-np in the structure. The developed system was also applied for detection of Hx in canned tuna fish sample and very promising results were obtained.  相似文献   

15.
Kyoungseon Min 《Talanta》2009,80(2):1007-191
A novel 3-dimensional single wall carbon nanotubes (SWNTs)-polypyrrole (Ppy) composite was prepared as an electrode by chemically polymerizing polypyrrole onto SWNTs using a LiClO4 oxidant. This composite electrode was characterized by scanning electron microscopy (SEM) and cyclic voltammetry with 1 mM [Fe(CN)6]−3/[Fe(CN)6]−4. The SWNTs were thickly coated with chemically polymerized polypyrrole and the composite had many surface pores and crevices which could enhance mass transfer. The SWNTs-Ppy composite electrode showed a large specific surface area (30 m2/g) and a good reproducible current response, at about 100 times the peak current of a glassy carbon electrode (GCE). The diffusion coefficient was calculated to be 4.81 × 10−6 cm2/s. As a biosensor application, tyrosinase was immobilized on the functionalized SWNTs and tyrosinase-SWNTs-Ppy composite was prepared in the same manner. This tyrosinase-SWNT-Ppy composite electrode was used for amperometric detection of dopamine in the presence of ascorbic acid and showed high sensitivity (467 mA/M cm2) and lower detection limit (5 μM) compared to previous reports.  相似文献   

16.
In this research, the graphene with excellent dispersity is prepared successfully by introducing gold nanoparticle to separate the individual sheets. Various techniques are adopted to characterize the prepared graphene and graphene-gold nanoparticle composite materials. This fabricated new composite material is used as the support material to construct a novel tyrosinase based biosensor for detection of bisphenol A (BPA). The electrochemical performances of the proposed new enzyme biosensor were investigated by differential pulse voltammetry (DPV) method. The proposed biosensor exhibited excellent performance for BPA determination with a wide linear range (2.5 × 10−3–3.0 μM), a highly reproducible response (RSD of 2.7%), low interferences and long-term stability. And more importantly, the calculated detection limit of the proposed biosensor was as low as 1 nM. Compared with other detection methods, this graphene-gold nanoparticle composite based tyrosinase biosensor is proved to be a promising and reliable tool for rapid detection of BPA for on-site analysis of emergency BPA related pollution affairs.  相似文献   

17.
This paper proposed a novel method for ultra-trace detection of pesticides combining electrochemical reduction of Ellman's reagent with acetylcholinesterase (AChE) inhibition. The amperometric biosensor, fabricated by immobilizing AChE on multi-walled carbon nanotubes-chitosan (MWCNTs-Chi) nanocomposites modified glassy carbon electrode, enjoyed high sensitivity owing to the excellent conductivity and favourable biocompatibility of MWCNTs-Chi nanocomposites. Meanwhile, the sensitivity of the biosensor was further enhanced using the electrochemical reduction signal of DTNB for determination. Under optimum conditions, methyl parathion was detected based on its inhibition effect on AChE activity and the subsequent change in electrochemical reduction response of DTNB. Good relationship was obtained between the reduction current and pesticide concentration in the ranges of 5.0 × 10−7 to 1.0 × 10−12 M with a detection limit of 7.5 × 10−13 M (S/N = 3). Moreover, the proposed protocol was successfully employed for the determination of methyl parathion in water and soil samples.  相似文献   

18.
The construction and performance of integrated amperometric biosensors for the determination of glycerol are reported. Two different biosensor configurations have been evaluated: one based on the glycerol dehydrogenase/diaphorase (GDH/DP) bienzyme system, and another using glycerol kinase/glycerol-3-phosphate oxidase/peroxidase (GK/GPOx/HRP). Both enzyme systems were immobilized together with the mediator tetrathiafulvalene (TTF) on a 3-mercaptopropionic acid (MPA) self-assembled monolayer (SAM)-modified gold electrode by using a dialysis membrane. The electrochemical oxidation of TTF at +150 mV (vs. Ag/AgCl), and the reduction of TTF+ at 0 mV were used for the monitoring of the enzyme reactions for the bienzyme and trienzyme configurations, respectively. Experimental variables concerning both the biosensors composition and the working conditions were optimized for each configuration. A good repeatability of the measurements with no need of cleaning or pretreatment of the biosensors was obtained in both cases. After 51 days of use, the GDH/DP biosensor still exhibited 87% of the original sensitivity, while the GK/GPOx/HRP biosensor yielded a 46% of the original response after 8 days. Calibration graphs for glycerol with linear ranges of 1.0 × 10−6 to 2.0 × 10−5 or 1.0 × 10−6 to 1.0 × 10−5 M glycerol and sensitivities of 1214 ± 21 or 1460 ± 34 μA M−1 were obtained with GDH/DP and GK/GPOx/HRP biosensors, respectively. The calculated detection limits were 4.0 × 10−7 and 3.1 × 10−7 M, respectively. The biosensors exhibited a great sensitivity with no significant interferences in the analysis of wines. The biosensors were applied to the determination of glycerol in 12 different wines and the results advantageously compared with those provided by a commercial enzyme kit.  相似文献   

19.
Tyrosinase from a plant source Amorphophallus companulatus was immobilized on eggshell membrane using glutaraldehyde. Among the three different approaches used for immobilization, activation of eggshell membrane by glutaraldehyde followed by enzyme adsorption on activated support could stabilize the enzyme tyrosinase and was found to be effective. Km and Vmax values for dopamine hydrochloride calculated from Lineweaver-Burk plot were 0.67 mM and 0.08 mM min−1, respectively. Studies on effect of pH showed retention of more than 90% activity over a pH range 5.0-6.5. Membrane bound enzyme exhibited consistent activity in the temperature range 20-45 °C. Shelf life of immobilized tyrosinase system was found to be more than 6 months when stored in phosphate buffer at 4 °C. An electrochemical biosensor for dopamine was developed by mounting the tyrosinase immobilized eggshell membrane on the surface of glassy carbon electrode. Dopamine concentrations were determined by the direct reduction of biocatalytically liberated quinone species at −0.19 V versus Ag/AgCl (3 M KCl). Linearity was observed within the range of 50-250 μM with a detection limit of 25 μM.  相似文献   

20.
A biosensor based on alfalfa sprout (Medicago sativa) homogenate as a source of peroxidase is proposed for the determination of thiodicarb by square-wave voltammetry. This enzyme was immobilized in self-assembled monolayers of l-cysteine on a gold electrode. Several parameters were investigated to evaluate the optimum conditions for operation of the biosensor. The analytical curve was linear for thiodicarb concentrations of 2.27 × 10−6 to 4.40 × 10−5 mol L−1 with a detection limit of 5.75 × 10−7 mol L−1. The lifetime of the Au-alfalfa sprout-SAMs was 20 days (at least 220 determinations). The average recovery of thiodicarb from samples of vegetable extracts ranged from 99.02 to 101.04%. The results obtained for thiodicarb in vegetable extracts using the proposed method are in close agreement with those using a high performance liquid chromatography procedure at the 95% confidence level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号