首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A simple and sensitive liquid chromatographic method is described for the simultaneous determination of biologically important very long chain fatty acids (docosanoic, tetracosanoic and hexacosanoic acids) as fluorogenic derivatives. The method is based on the derivatization of the fatty acids with 2-(2-naphtoxy)ethyl 2-(piperidino)ethanesulfonate (NOEPES) in toluene in the presence of potassium carbonate and 18-crown-6. Several parameters affecting the derivatization were studied, including reaction temperature, reaction time, reaction solvent, base catalyst and the amount of the reagent. The resulting derivatives were analyzed by HPLC with fluorimetric detection (λex=235 nm; λem=366 nm). The linear range for the determination of docosanoic, tetracosanoic and hexacosanoic acids was 0.028–1.4 μM with a detection limit of about 5.6 nM (S/N=3) (56 fmol per 10 μL injection). Application of the method to the analysis the non-esterified (free) very long chain fatty acids spiked in plasma proved feasible.  相似文献   

2.
Summary A simple and very sensitive HPLC method, for the simultaneous determination in human plasma of adriamycin and its metabolite adriamycinol, is described. Plasmas from patients were stored frozen. Thawed samples were extracted by absorption of anthracyclin onto a small C18 column. After evaporation of the eluate and reconstitution of the residue with methanol (100L), 30 to 40L of the mixture were injected into the chromatograph. Separation was obtained using an RP 8 column with a mobile phase of formate buffermethanol-acetonitrile (502327, v/v). A spectrofluorimeter was used as detector. The limit of sensitivity of the assay was 50 pcg/ml of plasma.  相似文献   

3.
A simple and sensitive isocratic liquid chromatographic method was developed for the analysis of isovaleric and valeric acids in human urine as biomarkers in metabolic acidosis. The method is based on the derivatization of isovaleric and valeric acids with a fluorescent reagent 2-(2-naphthoxy)ethyl-2-(piperidino)ethanesulfonate for labeling the analytes with the naphthoxy fluorophore. The resulting fluorescent derivatives of isovaleric and valeric acids were separated on a phenyl-hexyl column, using a mixed solvent of methanol-water-tetrahydrofuran (55:31:14, v/v) as the mobile phase. The separated derivatives were monitored with a fluorimetric detector (excitation at 225 nm and emission at 360 nm). The linear range of the method for the determination of isovaleric acid or valeric acid derivative was over 0.2 approximately 8.0 microM. The detection limit (signal to noise ratio=3 with 10 microl injected) of isovaleric acid or valeric acid was about 0.04 microM. Application of the method to the analysis of isovaleric acid in the urine of a patient with isovaleric acidemia proved feasible.  相似文献   

4.
Summary A high performance liquid chromatographic method for the determination of flecainide in serum has been developed. The analysis is performed on a microparticulate silica column. The eluate is monitored by fluorescence detection at an excitation wavelength of 300nm and an emission wavelength of 370nm. No sources of interference were identified and a coefficient of variation of less than 8% was observed on repeated flecainide determinations. The method has a good reproducibility, specificity and accuracy, and can be applied in therapeutic drug monitoring of flecainide in patients.  相似文献   

5.
A simple and sensitive liquid chromatographic method is described for the analysis of γ-amino-n-butyric acid (GABA) in human urine. GABA is increased in the urine of cancer patients and could be used as a biomarker in the diagnosis and treatment of related patients. The method is based on derivatizing GABA with a fluorescent reagent (naproxen acyl chloride) for transforming the non-chromophoric GABA to a derivative with chromophoric and fluorophoric properties. The resulting derivative is highly responsive to a fluorimetric detector (λex = 230 nm, λem = 350 nm). The lower quantitation of the method is attainable at 100 nM GABA with a detection limit about 10 nM (S/N = 3 with 20 μL injected). Application of the method to the analysis of GABA in the urine of patients with ovarian and uterine cancer was demonstrated.  相似文献   

6.
Vitamins A and E are fat‐soluble vitamins that play important roles in several physiological processes. Monitoring their concentrations is needed to detect deficiency and guide therapy. In this study, we developed a high‐performance liquid chromatography method to measure the major forms of vitamin A (retinol) and vitamin E (α‐tocopherol and γ‐tocopherol) in human blood plasma. Vitamins A and E were extracted with hexane and separated on a reversed‐phase column using methanol as the mobile phase. Retinol was detected by ultraviolet absorption, whereas tocopherols were detected by fluorescence emission. The chromatographic cycle time was 4.0 min per sample. The analytical measurement range was 0.03–5.14, 0.32–36.02, and 0.10–9.99 mg/L for retinol, α‐tocopherol, and γ‐tocopherol, respectively. Intr‐aassay and total coefficient of variation were <6.0% for all compounds. This method was traceable to standard reference materials offered by the National Institute of Standards and Technology. Reference intervals were established using plasma samples collected from 51 healthy adult donors and were found to be 0.30–1.20, 6.0–23.0, and 0.3–3.2 mg/L for retinol, α‐tocopherol, and γ‐tocopherol, respectively. In conclusion, we developed and validated a fast, simple, and sensitive high‐performance liquid chromatography method for measuring the major forms of vitamins A and E in human plasma.  相似文献   

7.
Summary Samples were extracted with dichloromethane and the organic layer evaporated to dryness. The residue was dissolved in methanol, and 10 μl aliquot injected onto the column. Tolbutamide was used as the internal standard for chlorpropamide. The UV detector response was linear over the range 0–200 μg ml−1 with a correlation coefficient of 0.999; detection limit: 0.002 μg ml−1. Within-day and between-day assay variation was generally ≤7%. No interference from endogenous constituents was observed. The utility of the method was demonstrated by determining chlorpropamide in samples from six healthy volunteers following a single oral dose of 250 mg. The procedure is simple and requires small volumes of plasma.  相似文献   

8.
Quantitative determination of omega-6 and omega-3 polyunsaturated fatty acids in human plasma and urine with high accuracy and precision provides significant information to monitor the underlying etiology of several diseases. In this regard, liquid chromatography-mass spectrometry is a good choice owing to its great selectivity and sensitivity. Additionally, the hybrid quadrupole–time of flight–mass spectrometer systems provides easy identification of target compounds with superior mass measurements. In this study, an analytical method has been developed for simple, accurate and simultaneous determination of linoleic acid, arachidonic acid, docosahexaenoic acid and eicosapentaenoic acid in a short chromatographic analysis period. The developed method is suitable for the quantitative detection of these four compounds with detection limits ranging between 1.1–3.0 ng ml−1 and its applicability was assessed in human urine and plasma samples. As a result, acceptable accuracy (between 83 and 111%) and good precision (<6%) were obtained for target compounds using matrix matching calibration strategy.  相似文献   

9.
Summary Elevated plasma homocysteine is, a known risk factor in arteriosclerotic vascular disease. To measure homocysteine in a large number of samples, we have developed a rapid, simple, robust and inexpensive reversed-phase HPLC method for routine analysis. Mercaptopro-pionylglycine was used as the internal standard and an external calibration in plasma was performed. Improvement was achieved by the use of gradient elution (using a sodium acetate buffer and methanol) resulting in a higher number of samples analyzed per day. Plasma samples were reduced with tributylphosphine and the proteins were precipitated with perchloric acid before addition of internal standard. The analytes were derivatized by use of 7-fluorobenzofurazone-4-sulfonic acid ammonium salt. For calibration human plasma was spiked with nine different concentrations of homocysteine (range 2–50 μmol L−1). The inter-assay precision of replicate (n=29) analysis of the concentration of homocysteine in a sample of pooled plasma was 3.0%. The limit of detection, defined as three times the signal-to-noise ratio, was 0.25 μmol L−1. The linearity of the assay was confirmed for a plasma concentration range of 2–2000 μmol L−1. The variation of duplicate analyses of 842 plasma samples was 2.6±1.7%.  相似文献   

10.
A simple, sensitive and rapid liquid chromatographic/electrospray ionization tandem mass spectrometric method was developed and validated for the quantification of lacidipine in human plasma using its structural analogue, amlodipine, as internal standard (IS). The method involves a simple single-step liquid-liquid extraction with tert-butyl methyl ether. The analyte was chromatographed on an Xterra MS C(18) reversed-phase chromatographic column by isocratic elution with 20 mM ammonium acetate buffer-acetonitrile (10:90, v/v; pH 6) and analyzed by mass spectrometry in the multiple reaction monitoring mode. The precursor to product ion transitions of m/z 456.4 --> 354.4 and m/z 409.3 --> 238.3 were used to measure the analyte and the I.S., respectively. The chromatographic run time was 1.5 min and the weighted (1/x(2)) calibration curves were linear over the range 0.1-25 ng ml(-1). Lacidipine was sensitive to temperature in addition to light. The method was validated in terms of accuracy, precision, absolute recovery, freeze-thaw stability, bench-top stability and re-injection reproducibility. The limit of detection and lower limit of quantification in human plasma were 50 and 100 pg ml(-1), respectively. The within- and between-batch accuracy and precision were found to be well within acceptable limits (<15%). The analyte was stable after three freeze-thaw cycles (deviation <15%). The average absolute recoveries of lacidipine and amlodipine (IS) from spiked plasma samples were 51.1 +/- 1.3 and 50.3 +/- 4.9%, respectively. The assay method described here could be applied to study the pharmacokinetics of lacidipine.  相似文献   

11.
The development and validation of an assay for the determination of paclitaxel in human plasma, human brain tumor tissue, mouse plasma and mouse brain tumor tissue is described. Paclitaxel was extracted from the matrices using liquid-liquid extraction with tert-butyl methyl ether, followed by chromatographic analysis using an alkaline eluent. Positive ionization electrospray tandem mass spectrometry was performed for selective and sensitive detection. The method was validated according to the FDA guidelines on bioanalytical method validation. Validation results indicate that calibration standards in human plasma can be used to quantify paclitaxel in all tested matrices. In human samples, the validated range for paclitaxel was from 0.25-1000 ng ml(-1) using 200 microl plasma aliquots and from 5 to 5000 ng g(-1) using 50 microl tumor homogenate aliquots (0.2 g tissue ml(-1) control human plasma). In mice, the ranges were 1-1000 ng ml(-1) and 5-5000 ng g(-1) using 50 microl of mouse plasma and 50 microl of tumor homogenate aliquots (0.2 g tissue ml(-1) control human plasma), respectively. The method can be applied to studies generating only small sample volumes (e.g. mouse plasma and tumor tissue), but also to studies in human plasma requiring a lower limit of quantitation. The assay was applied successfully to several studies with both human and mouse samples.  相似文献   

12.
Delafloxacin is a novel fluoroquinolone antibiotic that was approved by the European Medicine Agency to treat bacterial infections of the skin and underlying tissues, and community-acquired pneumonia. Despite being in the market since 2019 in the European Union, there is no published liquid chromatography-fluorescence method for delafloxacin quantification in biological samples. A novel, rapid, and sensitive high-performance liquid chromatographic method was developed to determine delafloxacin in human plasma using its native fluorescence. Plasma delafloxacin concentrations were determined by reverse-phase chromatography with fluorescence detection at 405/450 nm of excitation/emission wavelengths. Delafloxacin was separated on a Kromasil C18 column 250 × 4.6 mm id, 5 µm using isocratic elution. The mobile phase was a mixture of 0.05% trifluoroacetic acid/acetonitrile (52/48). Retention times were 5.4 and 11.6 min for delafloxacin and valsartan (internal standard), respectively. Regression calibration curves were linear over the range of 0.1–2.5 µg/mL. The lower limit of detection was 0.05 µg/mL, and the lower limit of quantification was 0.1 µg/mL. Accuracy and precision were always <11%, and the limit of quantification was <16%. Mean recovery was 98.3%. This method can be applied to determine delafloxacin in human plasma and could be useful to perform pharmacokinetic studies.  相似文献   

13.
A simple high-performance liquid chromatographic (HPLC) method was developed and validated for rapid quantification of linezolid in human plasma. Protein precipitation using a mixture of 5% trichloroacetic acid and methanol (3:1, v/v) provided a straightforward method of sample preparation and the internal standard eperezolid was employed. A concentration range from 0.20 to 40.0 mg/L was utilized to construct calibration curves, and analysis of low- (0.40 mg/L), medium- (7.50 mg/L) and high-quality (25.0 mg/L) control samples revealed excellent reproducibility (相似文献   

14.
Summary A simple, low-cost, sensitive and selective HPLC method was developed for the determination of phenazopyridine in human plasma. The method employs UV detection of phenazopyridine and of the internal Standard at 2 different wavelengths. Calibration curves were linear over a large dynamic range, i.e., within 0.05–10.0 μg mL−1 with limit of quantification of 0.05 μg mL−1, and a limit of detection of 0.01 μg mL−1.  相似文献   

15.
Summary A new highly sensitive high-performance liquid chromatographic (HPLC) procedure for determination of EGIS-9933 (a newly developed anxiolytic compound) in rat plasma is described. A gradient, elution method with UV detection at 270 nm has been developed using a mobile phase of a mixture of A: methanol:acetonitrile 1:9 and B:0.5% triethilamine in water, the pH of B was adjusted to 3 with phosphoric acid. Solid phase extraction (SPE) was used for the sample preparation. The calibration was linear in the 10–10000 ng mL−1 concentration range. The limit of quantification was 10 ng mL−1. The bioanalytical method was validated according to internationally accepted criteria for biological samples. Presented at: Balaton Symposium on High-Performance Separation Methods, Siófok, Hungary, September 3–5, 1997.  相似文献   

16.
Hefnawy MM  Aboul-Enein HY 《Talanta》2003,61(5):667-673
A new analytical method for the separation and determination of R-(−)- and S-(+)- baclofen enantiomers in human plasma by high-performance liquid chromatography (HPLC) with UV detection was developed. Enantioselective resolution of the baclofen enantiomers was achieved by using teicoplanin macrocyclic antibiotic chiral stationary phase (CSP) known as Chirobiotic T with a polar ionic mobile phase (PIM) consisting of methanol: glacial acetic acid: triethylamine, 100:0.1:0.1, (v/v/v) at a flow rate of 0.5 ml min−1 and UV detection set at 220 nm. The analytes of interest with S-(+)-sulpiride as the internal standard were extracted from human plasma using liquid-liquid extraction procedure with ethyl ether under alkaline condition prior to HPLC analysis. Recoveries for R-(−)- and S-(+)-baclofen enantiomers were in the ranges of 96-103% at 60-2500 ng ml−1 level. Intra-day and inter-day precision calculated as %RSD was in the ranges of 1.2-5.2 and 1.3-4.3% for both enantiomers, respectively. Intra-day and inter-day accuracy calculated as percentage error were in the ranges of 1.2-3.9 and 1.1-3.9% for both enantiomers, respectively. Linear calibration curves in the concentration ranges of 20-3000 ng ml−1 for each enantiomer showed correlation coefficient (r) of 0.9997. The limit of quantitation (LOQ) and limit of detection (LOD) for each enantiomer in human plasma were 20 and 10 ng ml−1 (S/N=3) respectively.  相似文献   

17.
The free fatty acids (FFAs) are one of the major components of the lipids in the stratum corneum (SC), the uppermost layer of the skin. Relative composition of FFAs has been proposed as a biomarker of the skin barrier status in patients with atopic dermatitis (AD). Here, we developed an LC‐ESI‐MS/MS method for simultaneous quantification of a range of FFAs with long and very long chain length in the SC collected by adhesive tape (D‐Squame). The method, based on derivatization with 2‐bromo‐1‐methylpyridinium iodide and 3‐carbinol‐1‐methylpyridinium iodide, allowed highly sensitive detection and quantification of FFAs using multiple reaction monitoring. For the quantification, we applied a surrogate analyte approach and internal standardization using isotope labeled derivatives of FFAs. Adhesive tapes showed the presence of several FFAs, which are also present in the SC, a problem encountered in previous studies. Therefore, the levels of FFAs in the SC were corrected using C12:0, which was present on the adhesive tape, but not detected in the SC. The method was applied to SC samples from patients with atopic dermatitis and healthy subjects. Quantification using multiple reaction monitoring allowed sufficient sensitivity to analyze FFAs of chain lengths C16–C28 in the SC collected on only one tape strip.  相似文献   

18.
The robustness study of the reversed-phase liquid chromatographic method developed for the quantitative analysis of carboxylic acids is a real asset to prepare method transfer because it provides an indication of its reliability during routine use. Indeed, it was possible to predict the consequences of small variations in operating conditions on the responses. The design of experiments approach was applied to model the effects and interactions of a high number of factors varying simultaneously with a limited number of runs. First we identified the factors which potentially affect the chromatographic responses used for carboxylic acids quantitation: detection wavelength (λ), column temperature (T), acetonitrile ratio in mobile phase (Me), duration of the plateau before the gradient (L) and gradient slope (S). Then we estimated the order of magnitude of realistic variations to assign factor levels. Finally a central composite design was carried out around the nominal conditions defined during method optimization. The statistical treatment of responses (retention factors, and concentrations) showed that the column temperature, the acetonitrile ratio in the mobile phase, the duration of the plateau before the gradient and the gradient slope were the most influent factors. The building of the robust domain from response-surfaces allowed us to give tolerance limits for the factors (216 nm < λ < 222 nm, 49.3 °C < T < 51.4 °C, 4.90% < Me < 5.18%, v/v, 4.5 min < L < 5.4 min, 9% < S < 11%) for which the performances of the method were maintained.  相似文献   

19.
Summary Busulfan (Myleran; 1,4-bis-(methanesulfonyloxy) butane; BU) is a bifunctional alkylating agent used in clinical practice since 1959. It is currently included at high doses in conditioning regimens for bone marrow transplantation, usually in combination with cyclo-phosphamide. A high-performance liquid chromatographic method has been developed for the determination of BU in plasma. The basis of the assay is a derivatization with sodium diethyldithiocarbamate at 32°C in the presence of 1-bromo-1-deoxy-3,6-anhydrogalactitol as internal standard. Analysis is performed on a cyano column with heptane-isopropanol-glacial acetic acid as mobile phase and UV detection at 280 nm. The calibration graph was linear in the concentration range 0.18–46.40 μM BU in plasma. The limit of detection was 0.1 μM. The precision and accuracy were between the limits required by good laboratory practice. Presented at Balaton Symposium on High-Performance Separation Methods, Siófok, Hungary, september 1–3, 1999  相似文献   

20.
A simple, sensitive, and rapid liquid chromatographic method was developed and validated using diode array detection for the determination of five commonly used antimalarial drugs in pharmaceutical formulations and in human plasma. Chromatographic separation of antimalarial drugs and internal standard (ibuprofen) was achieved on a C18 column with a mobile phase composed of 10 mM dipotassium orthophosphate at pH 3.0, methanol, and acetonitrile in a ratio of 20:38:42 v/v, at a flow rate of 1 mL/min. The analytes were monitored at 220 nm and separated in ?10 min. The method was validated for linearity, accuracy, precision, limit of quantification, and robustness. Both intra‐ and interday precisions (in terms of %RSD) were lower than 3% and accuracy ranged from 98.1 to 104.5%. Extraction recoveries were ≥96% in plasma. The limits of quantitation for artemether, lumefantrine, pyrimethamine, sulfadoxine, and mefloquine were 0.3, 0.03, 0.06, 0.15, and 0.15 μg/mL in human plasma. Stability under various conditions was also investigated. The method was successfully applied for quantification of antimalarial drugs in marketed formulations and in spiked human plasma. The method can be employed for routine QC purposes and in pharmacokinetic investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号