首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selective polymeric extractants were prepared for preconcentration of Cibacron reactive red dye, a dye that is often applied with Cibacron reactive blue and Cibacron reactive yellow for dyeing of fabrics. The best extractant was fabricated (in chloroform) using methacrylic acid (as monomer), ethylene glycol dimethacrylate (as crosslinker), AIBN (as initiator for polymerization), and red dye as template molecule, with a molar stoichiometric ratio of 8.0:40.0:2.5:0.63, respectively. The structure of the molecularly imprinted polymer (MIP) was robust, and resisted dissolution up to 260 °C. Compared with the un-imprinted polymer, the imprinted product has a large specific surface area which improved its adsorption capacity. The effect of imprinting was obvious from the adsorption capacity measured at pH 4 for red dye (the imprinted molecule), which was increased from 24.0 to 79.3 mg g−1 after imprinting. Equilibrium adsorption studies revealed that the dye-imprinted-polymer enables efficient extraction of red dye even in the presence of blue and yellow dyes which have similar chemical natures to the red dye. The selectivity coefficients S red dye/dye, were 13.9 and 17.1 relative to the yellow and blue dyes, respectively. The MIP was found to be effective for red dye preconcentration, with a preconcentration factor of 100, from tap water and treated textile wastewater. The factors affecting extraction of red dye by the MIP were studied and optimized. Under the optimized extraction conditions, red dye was selectively quantified in the presence of other competing dyes at a concentration of 20 μg L−1 from different water systems with satisfactory recoveries (91–95%) and RSD values (∼5.0%).  相似文献   

2.
A molecularly imprinted polymer solid-phase extraction method is used to extract esculetin from the ash bark of Chinese traditional medicine. Ratio of ethanol and water as washing solution were investigated. Data of accumulative adsorption on molecularly imprinted polymers from the continuous loading experiment suggests that there are two different kinds of recognition sites in molecularly imprinted polymers. By selecting the washing and eluting solution a scheme was designed to separate esculetin and its analogues including esculin, coumarin, 7-methoxylcoumarin and daphnetin. Finally, by applying the revised scheme esculetin was extracted from the ash bark of Chinese traditional medicine that was purchased from two big drugstores, respectively, with both molecularly imprinted polymers and non-molecularly imprinted polymers.  相似文献   

3.
This work describes an on-line molecularly imprinted solid-phase extraction (MISPE) method for spectrophotometric determination of nicotine in urine samples of smokers. This method is based on manganese (VII) to manganese (VI) reduction in an alkaline medium, promoted by nicotine. Two wash solutions (1:4 (v/v) acetonitrile:sodium hydroxide - pH 11.4, and nitric acid - pH 2.5) were employed to circumvent interferences. Aqueous solutions containing nicotine plus different possible concomitants (cotinine, anabasine, norcotinine and caffeine) were tested individually. The analytical calibration curve was prepared in urine samples collected from non-smokers and spiked with nicotine standard from 1.1 to 60 μmol L−1 (r2 > 0.998). The limit of quantification and the analytical frequency were 1.1 μmol L−1 and 11 h−1, respectively. The precision, evaluated using 3, 10 and 30 μmol L−1 nicotine in urine, was 10, 10 and 4% (intra-day precision) and 12, 13 and 5% (inter-day precision), respectively. Accuracy was checked through high performance liquid chromatography and the results did not present significant differences at the 95% confidence level according to the Student's t-test.  相似文献   

4.
三氯生分子印迹传感器的制备及其性能研究   总被引:1,自引:0,他引:1  
应用分子印迹技术, 以邻苯二胺为功能单体、三氯生为模板, 用循环伏安法在玻碳电极表面合成了性能稳定的三氯生分子印迹聚合膜, 并用方波伏安法对此印迹传感器进行了分析应用研究.  相似文献   

5.
Molecular imprinted polymers (MIPs) were prepared through thermal polymerization by using quercetin as the template molecule, acrylamide (AA) as the functional monomer and ethylene glycol dimethacrylate (EDMA) as the cross-linker in the porogen of tetrahydrofuran (THF). The synthesized MIPs were identified by both Fourier transform infrared (FTIR) and scanning electron microscope (SEM). Systematic investigations of the influences of key synthetic conditions, including functional monomers, porogens and cross-linkers, on the recognition properties of the MIPs were conducted. Scatchard analysis revealed that the homogeneous binding sites were formed in the polymers. Besides quercetin, two structurally similar compounds of rutin and catechol were employed for molecular recognition specificity tests of MIPs. It was observed that the MIPs exhibited the highest selective rebinding to quercetin. Accordingly, the MIPs were used as a solid-phase extraction (SPE) sorbent for the extraction and enrichment of quercetin in cacumen platycladi samples, followed by HPLC-UV analysis. The application of MIPs with high affinity and excellent stereo-selectivity toward quercetin in SPE might offer a novel method for the enrichment and determination of flavonoid compounds in the natural products.  相似文献   

6.
Six molecularly imprinted polymers (MIPs) of erythromycin (ERY) were prepared by noncovalent bulk polymerization using methacrylic acid (MAA) as the functional monomer. On the basis of binding analysis, the MIPs with 1:2 optimum ratio of template to MAA were selected for subsequent scanning electron microscopy and Brunauer–Emmett–Teller analyses, which indicated that the MIPs had more convergent porous structures than the nonimprinted polymers. The equilibrium binding experiments showed that the binding sites of MIPs were heterogeneous, with two dissociation constants of 0.005 and 0.63 mg mL−1, respectively. Furthermore, the performance of the MIPs as solid-phase extraction (SPE) sorbents was evaluated, and the selectivity analysis showed that the MIPs could recognize ERY with moderate cross-reactivity for other macrolides. The overall investigation of molecularly imprinted SPE for cleanup and enrichment of the ERY in pig muscle and tap water confirmed the feasibility of utilizing the MIPs obtained as specific SPE sorbents for ERY extraction in real samples. Figure Schematic diagram of the preparation and application of the erythromycin imprinted molecularly imprinted polymers Suquan Song and Aibo Wu contributed equally to this work.  相似文献   

7.
Monodisperse molecularly imprinted polymers for oleanolic acid were successfully prepared by a precipitation polymerization method using oleanolic acid as a template, methacrylic acid as a functional monomer, and divinylbenzene/ethylene glycol dimethacrylate as a crosslinker in a mixture of acetonitrile and ethanol (3:1, v/v). The imprinted polymers and nonimprinted polymers were characterized by using scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The resulting imprinted polymers had average diameters of 3.15 μm and monodispersity values of 1.024. The results clearly demonstrate that use of ethanol as a cosolvent is indeed exceedingly effective in promoting the dissolution of oleanolic acid and in obtaining uniform microspheres. Molecular recognition properties and binding capability to oleanolic acid were evaluated by adsorption testing, which indicated that the imprinted polymers displayed optimal binding performance with a maximum adsorption capacity of 17.3 mg/g and a binding saturation time of 80 min. Meanwhile, the produced imprinted polymers exhibited higher selectivity to oleanolic acid than that for ursolic acid and rhein. Herein, the studies can provide theoretical and experimental references for the oleanolic acid molecular imprinted system.  相似文献   

8.
The determination of acidic pharmaceuticals, such as non-steroidal anti-inflammatory drugs NSAIDs and clofibric acid (metabolite of clofibrate), at low ng L−1 levels in wastewater requires highly selective and sensitive analytical procedures. The removal of matrix components during sample preparation results in significant benefits towards reducing the matrix effects during LC-MS analysis. Therefore this work describes a simple method to enrich and clean up NSAIDs and clofibric acid from sewage water using molecularly imprinted solid-phase extraction (MISPE). Final analysis was performed by liquid chromatography-tandem mass spectrometry. The performance of this method has been evaluated in fortified tap and sewage water in terms of recovery, precision, linearity, and method quantification limit. Recovery for all compounds ranged in all matrices between 84 and 116% with intra-day R.S.D. values below 11.5%. Matrix effect evaluation demonstrated that even complex sample matrixes, such as pond or sewage water did not showed significant ion suppression/enhancement compared to tap water. The performance of the method was further emphasized by the study of pond water, which receives treated water from a sewage treatment plant in south Sweden. Raw sewage and treated water were also tested. In those samples, all acidic pharmaceuticals were detected in concentration above method quantification limits ranging from 5.1 to 5153.0 ng L−1.  相似文献   

9.
High selective molecularly imprinted polymers(MIPs) for tetracycline have been prepared by precipitation polymerization. Effects of monomer and solvent,the ratio of monomer and template and the characterization of the polymer were investigated by frontal chromatography and selectivity experiment.The results clearly indicated that the polymer,which had the highest molecular recognition abilities for tetracycline antibiotics,had been received.  相似文献   

10.
A novel molecularly imprinted polymer (MIP) that was applied to a solid-phase micro-extraction (SPME) device, which could be coupled directly to gas chromatograph and mass spectrometer (GC/MS), was prepared using dibutyl phthalate (DBP) as the template molecule. The characteristics and application of this fiber were investigated. Electron microscope images indicated that the MIP-coated solid-phase micro-extraction (MI-SPME) fibers were homogeneous and porous. The extraction yield of DBP with the MI-SPME fibers was higher than that of the non-imprinted polymer (NIP)-coated SPME (NI-SPME) fibers. The MI-SPME fibers had a higher selectivity to other phthalates that had similar structures as DBP. A method was developed for the determination of phthalates using MI-SPME fibers coupled with GC/MS. The extraction conditions were optimized. Detection limits for the phthalate samples were within the range of 2.17-20.84 ng L−1. The method was applied to five kinds of phthalates dissolved in spiked aqueous samples and resulted in recoveries of up to 94.54-105.34%, respectively. Thus, the MI-SPME fibers are suitable for the extraction of trace phthalates in complicated samples.  相似文献   

11.
Novel molecularly imprinted microgels incorporating arginine and tyrosine side chains as functional monomers have been designed and synthesised with percentages of cross-linker ranging from 70 to 90%. Full chemico-physical characterisation including Mr, coil density and size particle determination concluded that all polymer preparations obtained can be classified as microgels. Molecular imprinting using a phosphate template was used to generate catalytic microgels for the hydrolysis of p-nitrophenyl carbonates. Kinetic characterisation of the catalytic activity of the different preparations indicated that values of critical monomer concentration (CM) and percentage of cross-linker play an important role in determining the catalytic efficiency of the different preparations. Microgels containing 70% cross-linker were the only ones following the Michaelis-Menten saturation model and kinetic parameters were obtained using 4 mg/ml of M397: Vmax = 1.34 × 10−6 M s−1 (S.E. 1.28 × 10−7) and KM = 2.38 × 10−3 M (S.E. 3.1 × 10−4).  相似文献   

12.
《Comptes Rendus Chimie》2017,20(5):585-591
Ketoprofen is a nonsteroidal anti-inflammatory drug widely consumed by humans as it possesses analgesic activities. A selective molecularly imprinted polymer (MIP) for ketoprofen was synthesized and applied as a solid-phase extraction sorbent. MIP was synthesized using 2-vinylpyridine, ethylene glycol dimethacrylate, 1,1′-azobis(cyclohexanecarbonitrile), toluene/acetonitrile (9:1, v/v), and ketoprofen as a functional monomer, cross-linker, initiator, porogenic mixture, and template, respectively. The polymerization was performed at 60 °C for 16 h, and thereafter the temperature was increased to 80 °C for 24 h to achieve a solid monolith polymer. Nonimprinted polymer was synthesized in a similar manner with the omission of ketoprofen. Characterization with thermogravimetric analysis and X-ray diffraction showed that the synthesized polymers were thermally stable and amorphous. Solid-phase extraction cartridges packed with MIP were used with high-performance liquid chromatography for quantitative analysis of ketoprofen in wastewater. The analytical method gave detection limits of 0.23, 0.17, and 0.09 μg/L in wastewater influent, effluent, and deionized water, respectively. The recovery for the wastewater influent and effluent spiked with 5 μg/L of ketoprofen was 68%, whereas 114% was obtained for deionized water. The concentrations of ketoprofen in the influent and effluent samples were in the ranges of 22.5–34.0 and 1.14–5.33 μg/L, respectively. Overall, the analytical method for the analysis of ketoprofen in wastewater was rapid, affordable, accurate, precise, sensitive, and selective.  相似文献   

13.
Molecularly imprinted polymers (MIPs) were grafted successfully from the surface of silica gel particles via surface initiated reversible addition-fragmentation chain transfer (RAFT) polymerization using RAFT agent functionalized silica gel as the chain transfer agent. The intrinsic characteristics of the controlled/living polymerization mechanism of RAFT allowed for the effective control of the grafting process. Thus the grafting copolymerization of methacrylic acid and divinyl benzene in the presence of template theophylline led to thin MIP film coating silica gel (MIP-Silica). The thickness of MIP film prepared in this study is about 1.98 nm, which was calculated from the nitrogen sorption analysis results. Measured binding kinetics for theophylline to the MIP-Silica and MIPs prepared by conventional bulk polymerization demonstrated that MIP-Silica had improved mass-transfer properties. In addition, the theophylline-imprinted MIP-Silica was used as the sorbent in solid-phase extraction to determine theophylline in blood serum with satisfactory recovery higher than 90%. Nonspecific adsorption of interfering compounds can be eliminated by a simple elution with acetonitrile, without sacrificing the selective binding of theophylline.  相似文献   

14.
以水杨酸作为模板分子,通过原位聚合法,在玻碳电极表面合成了水杨酸分子印迹聚合物膜,并用方波伏安法对该印迹电极进行了分析研究.当吸附时间为7 min时,印迹电极对水杨酸浓度响应的线性范围为1.0×10-5~2.6×10-5mol/L,检出限(S/N=3)为2.0×10-6mol/L,同一支印迹电极对水杨酸响应值的RSD为...  相似文献   

15.
An analytical methodology for the analysis of four polar organophophorus pesticides (monocrotophos, mevinphos, phosphamidon, omethoate) in water and soil samples incorporating a molecularly imprinted solid-phase extraction (MISPE) process using a monocrotophos-imprinted polymer was developed. Binding study demonstrated that the polymer showed excellent affinity and high selectivity to monocrotophos. The MISPE procedure including the clean-up step to remove any interferences was optimized. The accuracy and selectivity of the MISPE process developed were verified using a non-imprinted (blank) polymer and a classical ENVI-18 cartridge as the SPE matrix during control experiments. The use of MISPE improved the accuracy and precision of the GC method and lowered the limit of detection. The recoveries of four polar organophosphorus pesticides (OPPs) extracted from 1 L of river water at a 100 ng/L spike level were in the range of 77.5-99.1%. The recoveries of organophosphorus pesticides extracted from a 5-g soil sample at the 100 microg/kg level were in the range of 79.3-93.5%. The limit of detection varied from 10 to 32 ng/L in water and from 12 to 34 microg/kg in soil samples. The molecularly imprinted polymer (MIP) enabled the selective extraction of four organophosphorus pesticides successfully from water and soil samples, demonstrating the potential of molecularly imprinted solid-phase extraction for rapid, selective, and cost-effective sample pretreatment.  相似文献   

16.
Molecularly imprinted polymers (MIPs) were prepared by precipitation polymerization using tebuconazole (TBZ) as a template. Frontal chromatography and selectivity experiments were used to determine the binding capabilities and binding specificities of different MIPs. The polymer that had the highest binding selectivity and capability was used as the solid-phase extraction (SPE) sorbent for the direct extraction of TBZ from different biological and environmental samples (cabbage, pannage, shrimp, orange juice and tap water). The extraction protocol was optimized and the optimum conditions were: conditioning with 5 mL methanol:acetic acid (9:1), 5 mL methanol and 5 mL water respectively, loading with 5 mL aqueous samples, washing with 1.2 mL acetonitrile (ACN):phosphate buffer (5:5, pH3), and eluting with 3 mL methanol. The MIPs were able to selectively recognize, effectively trap and preconcentrate TBZ over a concentration range of 0.5–15 μmol/L. The intraday and interday RSDs were less than 9.7% and 8.6%, respectively. The limit of quantification was 0.1 μmol/L. Under optimum conditions, the MISPE recoveries of spiked cabbage, pannage, shrimp, orange juice and tap water were 62.3%, 75.8%, 71.6%, 89% and 93.9%, respectively. MISPE gave better HPLC separation efficiencies and higher recoveries than C18 SPE and strong cation exchange (SCX) SPE. Figure HPLC analysis of spiked pannage after MISPE (A) and after C18 SPE (B). HQ (1), E3 (2), p-NP (3), FTF (4), TBZ (5), PNZ (6), HXZ (7) Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

17.
Molecularly imprinted sorbents were synthesized and used as selective extraction sorbents for the analysis of nitroaromatic explosives. Their synthesis by radical polymerization using organic monomers and by sol–gel approach using organosilanes was considered to develop a selective sorbent. The sol–gel approach with phenyltrimethoxysilane (PTMS) as monomer and 2,4-dinitrotoluene (2,4-DNT) as template gave the most promising results. An optimized procedure adapted to the selective treatment of aqueous samples was then developed and applied to various target explosives. For the first time four nitroaromatic compounds were retained on the molecularly imprinted silica (MIS) with extraction recoveries between 29% and 81%, while only low recoveries were obtained on the non-imprinted sorbent, thus highlighting the high degree of selectivity. The MIS was then used for the clean-up of a sample containing motor oil spiked with 2,4-DNT and 2,4,6-trinitrotoluene (2,4,6-TNT). The results were compared with those obtained using a conventional sorbent (Oasis HLB). The cleanest chromatogram obtained using the MIS emphasized the high potential of the MIS as selective sorbent.  相似文献   

18.
Photoresponsive molecularly imprinted polymers (PMIPs) containing azobenzene have received wide research attention in recent years and made notable achievements. This article reviews the recent developments on PMIPs containing azobenzene. Topics include the following: (i) brief introduction of azobenzene, molecularly imprinted polymers, and PMIPs containing azobenzene; (ii) progress in functional monomers, cross-linkers, and polymerization conditions; (iii) preparation methods, properties, applications, as well as advantages and disadvantages of conventional PMIPs; (iv) substrate, preparation method, and applications of photoresponsive surface molecularly imprinted polymers; and (v) some perspectives for further development of PMIPs containing azobenzene.  相似文献   

19.
The estrogenic compound diethylstilbestrol (DES) is widely studied because of its potential endocrine disruption effects. The prohibition of the use of diethylstilbestrol as a growth promoter has not been enough to ensure the total disappearance of this compound from environmental matrices. Due to the low levels of DES present in the environment, preconcentration and clean up methods are necessary for its analysis. This paper describes the synthesis and use of a molecularly imprinted polymer (MIP) as sorbent for on-column solid-phase extraction of DES from aqueous samples. The selectivity of the DES-MIP was evaluated towards several selected estrogens such as hexestrol (HEX), estrone (E1), estriol (E3), estradiol (E2) and ethynylestradiol (EE2). HPLC-DAD was used to quantify all analytes at 230-nm wavelength. The method has been successfully applied to the analysis of DES in spiked river and tap water samples, with recoveries of 72% and 83% respectively.  相似文献   

20.
The aim of this work was to develop a method for the clean-up of a mycotoxin, i.e. Ochratoxin A (OTA), from cereal extracts employing a new molecularly imprinted polymer (MIP) as selective sorbent for solid-phase extraction (SPE) and to compare with an immunoaffinity column. A first series of experiments was carried out in pure solvents to estimate the potential of the imprinted sorbent in terms of selectivity studying the retention of OTA on the MIP and on a non-imprinted polymer using conventional crushed monolith. The selectivity of the MIP was also checked by its application to wheat extracts. Then, after this feasibility study, two different formats of MIP: crushed monolith and micro-beads were evaluated and compared. Therefore an optimization procedure was applied to the selective extraction from wheat using the MIP beads. The whole procedure was validated by applying it to wheat extract spiked by OTA at different concentration levels and then to a certified contaminated wheat sample. Recoveries close to 100% were obtained. The high selectivity brought by the MIP was compared to the selectivity by an immunoaffinity cartridge for the clean-up of the same wheat sample. The study of capacity of both showed a significant higher capacity of the MIP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号